Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Advanced Materials 3 (1991), S. 542-548 
    ISSN: 0935-9648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Metal-organic chemical vapor deposition (MOCVD) is a suitable technique for the preparation of III-V epitaxial layers which are used in the fabrication of microelectronic and optoelectronic devices. The usual Ga and As sources for GaAs are Ga(CH3)3 and AsH3, respectively. However, the use of these precursors has some disadvantages including: The toxicity and storage of arsine, stoichiometry control, carbon incorporation and unwanted side reactions. Several groups of researchers have investigated alternative sources for both the group-III and group-V elements. A review of these new organometallic precursors is presented in this paper. However, because group-III and group-V elements form Lewis-acid/base adducts in the MOCVD reactor, we have especially investigated the use of this class of compounds as single starting molecules. Several adducts have been successfully used for the epitaxial growth of GaAs. Moreover, to avoid any stoichiometry loss due to dissociation of the adduct, the properties of organometallic molecules which feature a covalent bond between the group-III and group-V elements have also been investigated. These covalent compounds are probably formed in the MOCVD reactor when alkyl group-V compounds containing acidic hydrogen R3-nMHn (M = As, P; n = 1,2) are used. Such new precursors are also briefly reviewed.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemical Vapor Deposition 2 (1996), S. 113-116 
    ISSN: 0948-1907
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0948-1907
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0948-1907
    Keywords: MOCVD ; Chromium carbonitride films ; Hard metallurgical coatings ; Single-source precursor ; Pyrolysis mechanism ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Chromium carbonitride coatings with a low nitrogen content were deposited by low pressure MOCVD in the temperature range 573-793 K using Cr(NEt2)4 as single-source precursor. As-deposited films are amorphous and crystallize upon annealing at 873 K to form an orthorhombic ternary phase. They exhibit a high hardness and their resistivity decreases by increasing the growth temperature. This dependence has been correlated to their microstructure. Quantitative 1H NMR analysis of the by-products of the MOCVD reaction has been performed. The quasi-equimolecular ratio of the by-products EtN=CHMe and HNEt2 suggests that most of the NEt2 ligands are removed by a stepwise mechanism, which is discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...