Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (6)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 52 (1994), S. 569-576 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The compression creep behavior was monitored at constant temperature and/or relative humidity for two slabstock foams with different hard-segment content. The tests were performed by applying a constant load (free falling weight) and then monitoring the strain as a function of time over a 3-h time period. A near linear relationship is obtained for linear strain versus log time after a short induction period for both foams and at most conditions studied (except at temperatures near and above 125°C). The slope of this relationship or the initial creep rate is dependent on the initial strain level, espcially in the range of 10-60% deformation. This dependence is believed to be related to the cellular structs buckling within this range of strain. At deformations greater than 60% and less than 10%, the solid portion of the foam is thought to control the compressive creep behavior in contrast to the cellular texture. Increasing relative humidity does cause a greater amount of creep to occur and is believed to be a result of water acting as a plasticizer. For low humidities increasing the temperature from 30 to 85°C, a decrease in the rate of creep is observed at a 65% initial deformation. At 125°C, an increase in the creep rate is seen and is believed to be related to chemical as well as additional structural changes taking place in the solid portion of the foams. The creep rate is higher for the higher hard-segment foam (34 wt %) than that of the lower (21 wt %) at all of the conditions studied and for the same initial deformation level. This difference is principally attributed to the greater amount of hydrogen bonds available for disruption in the higher hard-segment foam. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 52 (1994), S. 1459-1476 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Characterization of a series of flexible polyurethane foams that contain LiCl in their formulation is discussed. These foams were developed in order to provide an alternative method to produce foams without physical blowing agents and still attempt to maintain specific important physical properties. Three high water content foams of varying LiCl content have been characterized by utilizing several morphological techniques as well as by their viscoelastic behavior. From a morphological standpoint, it appears that by adding LiCl to the formulation, there is less formation of urea-rich aggregates that occur when LiCl is absent. Also, the hard segments are more dispersed as single units within the network. The cellular texture of the LiCl-containing foams also shows a greater amount of cellular window material than the same foam without LiCl. Both of these changes due to LiCl addition are believed to bring about a significant increase in the amount of viscoelastic decay. This decay has been observed in tensile stress relaxation, compression load relaxation, and compressive creep studies. Temperature also has a more significant effect on the compression load relaxation behavior of foams with LiCl in their formulation than when absent. These differences in viscoelastic behavior between foams with and without LiCl in their formulation are attributed to the greater mobility of the hard segments in the presence of the LiCl additive serving as a localized “hard segment” plasticizer that also promotes more phase mixing in the foams. © 1994 John Wiley & Sons, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 43 (1991), S. 801-815 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The ambient temperature structure-property orientation behavior in two different polyureaurethane polymers (one cross-linked and one linear) was measured by using infrared dichroism along with mechanical response. Thin films (plaques) thermally compression-molded from TDI-polypropylene (PO) flexible water-blown polyurea-urethane foams and solution-cast TDI-PO polyurea-urethane elastomers were studied. Segmental orientation was measured as a function of elongation and relaxation, as well as of hysteresis behavior. The level of strain was 50-70% for the plaques and up to 240% for the elastomer. The soft segments for both materials exhibited a low state of orientation with elongation. Small changes in orientation with time and upon cyclic straining were also observed for the soft segments. Significant transverse orientation upon stretching was observed in the hard segments of the plaques and up to elongations of 100% for the elastomer. The transverse behavior of the hard segments in the plaques pressed from the foams was attributed to both the smaller hard domains as well as to the polyurea aggregates that have been reported to be present in flexible foams. This transverse behavior also suggested that the smaller hard domains and the polyurea aggregates possess a lamellarlike structure. At low strain levels (up to 50%), only small amounts of orientation hysteresis as well as mechanical hysteresis were observed for the hard segments of the plaques as well as for the elastomer. No significant relaxation in orientation was detected for the hard segments of both materials at a 30% strain level.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 52 (1994), S. 549-568 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The relaxation behavior of the load in compression and the stress in tension was monitored at constant temperature and/or relatively humidity for a set of four slabstock foams with varying hard-segment content as well as two of the compression molded plaques of these foams. The majority of the compression relaxation tests were done at a 65% strain level in order to be consistent with the common ILD test. The tensile stress relaxation tests were performed at a 25% strain level. Over the 3-h testing period, a linear relationship between the log of compressive load or the log of tensile stress versus log time is observed for most testing conditions. For linear behavior, the values of the slope or the load/stress decay rate are comparable in both the tension and compression modes with the values being slightly higher in magnitude for the compression mode. These rates of decay are in the range of -2.2 × 10 -2 to -1.7 × 10 -2 for a 21 wt % hard-segment foam and -3.2 × 10-2 to -2.4 × 10-2 for a 34 wt % hard-segment foam. Increasing %RH at a given temperature does bring about a steady decrease in the initial load or initial stress as well as a slight increase in the rate of relaxation. The effect of temperature on the relaxation behavior is most significant at temperatures near 125°C and above. The FTIR thermal analysis of the plaques indicates that this significant increase is due to additional hydrogen bond disruption and possible chain scission taking place in the urea and urethane linkages that are principally present in the hard segment regions. The relaxation behavior in both tension and compression is believed to be mostly independent of the cellular texture of the foam at the strain levels given above. This conclusion is based on the similar relaxation behavior between the plaques and the foams. © 1994 John Wiley & Sons, Inc.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 52 (1994), S. 1175-1180 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: High-resolution solid-state 13C-NMR has been used to study the phase separation and molecular motion in two series of polyurethane foams. These two series differ by one possessing the additive of lithium chloride, LiCl. NMR relaxation times can map the motion throughout the polymer molecule and detect changes in that motion arising from either microseparation or phase mixing between the different segments. There are only slight changes in the soft segment T1p(13C) values as well as an increase in the hard segment T1p(1H) values with increase in the hard segment content for the foams studied. The T1p(1H) and T1p(13C) values do indicate that the phase separation of the hard and soft segments is similar for all foams. A decrease in the T1p(1H) and T1p(13C) values with increasing LiCl content indicates that the motion of the soft segments is restricted more by the hard segments. This is explained by more phase mixing in the foams containing the LiCl additive. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 50 (1993), S. 293-301 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Samples of flexible water-blown slabstock polyurethane foams were compressed under constant load to study the effects of cycling moisture content on creep behavior and compare this behavior with the creep response where either a constant high or low moisture environment existed at the same temperature. Three sets of foams were tested: (1) 4 pph water content slabstock foam; (2) 5 pph water content slabstock foam; and (3) 2 pph water content molded foam. As the moisture conditions were cycled from low to high humidity while maintaining constant temperature in an environmental chamber, the compressive strain increased in subsequent steps with larger increases observed during the desorption portion of the humidity cycling. All three sets of foams showed similar behavior at a given temperature. At a temperature of 40°C, the strain levels under cyclic moisture conditions surpassed those levels observed at the highest constant relative humidity. During the first absorption step, the creep level increased. During any subsequent absorption step, the creep level either increased very little or none at all. Finally, during any desorption step, the creep level increased. This overall phenomenon of enhanced creep under cyclic moisture levels is attributed to water interacting with the hydrogen bonded structure within the foam. These hydrophillic interactions, principally promoted within the hard segment regions due to high hydrogen bonding, are disrupted causing slippage and increased in strain. As the foam is rapidly dired, regions of free volume are induced by the loss of water thus causing further increases in strain Prior to the reestablishment of well ordered hydrogen bonding. Further support to this proposition was given by the results obtained at a temperature of 90° C where it is well known that hydrogen bonds are much more mobile. Here, the strain levels under cyclic moisture conditions were nearly the same as those under constant high relative humidity. Weakening of the hydrogen bonds by means such as increased temperature resulted in similar strain levels to those under cyclic moisture levels. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...