Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Melt rheology and its time-temperature dependence have long been known to be fundamental properties associated with satisfactory expansion characteristics in vinyl foam. Since much is known about the relationship between rheology and material variables like polymer morphology and system composition, adequate rheological characterization should be quite helpful in polymer design and plastisol compounding.Earlier attempts to study the melt rheology of plasticized PVC foam systems were only partially successful because instrument limitations required that the material be studied at too high shear rate or temperature, or that behavior of specific compositions be extrapolated from data obtained at considerably higher plasticizer level.This paper deals with measurement of the viscoelastic behavior of melts from actual azodicarbonamide foam compositions. The Rheometrics Mechanical Spectrometer was used in the orthogonal mode to study both elastic modulus and loss modulus (viscosity) in the range of shear rates and temperatures which actually occur during commercial utilization of PVC foam compounds. The effects of changing vinyl resin types and plasticizer types and levels were explored.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 28 (1983), S. 807-822 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Poly(vinyl chloride) (PVC) plastisols are used for coatings, films, sheets, foams, and rotational castings. In order to satisfy the requirements for the different applications, a variety of PVC dispersion resins are manufactured. The requirements for the plastisols are many: for example, good air release, viscosity stability, fine particle size, foamability, and good heat stability. Processability is another important requirement, which emphasizes the rheological behavior at room temperature and the gelation - fusion behavior. This paper documents research to fingerprint the gelation and fusion profiles of various PVC dispersion resins. The viscoelastic measurements were used to continuously monitor the changes of moduli during gelation and fusion under a heating rate which simulates the temperature profile of the processes. The effects of molecular weight, resin type, and copolymer on the gelation-fusion behavior are discussed.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...