Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Constructive approximation 9 (1993), S. 59-82 
    ISSN: 1432-0940
    Keywords: Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules on (−∞, ∞) ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory ; Gauss quadrature ; Nevai-Ullmann distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Letw be a “nice” positive weight function on (−∞, ∞), such asw(x)=exp(−⋎x⋎α) α〉1. Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} } f(x_{jn} )$$ is aninterpolatory integration rule for the weightw: that is for polynomialsP of degree ≤n-1, $$I_n [P]: = \int\limits_{ - \infty }^\infty {P(x)w(x)dx.} $$ Moreover, suppose that the sequence of rules {I n} n=1 t8 isconvergent: $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - \infty }^\infty {f(x)w(x)dx} $$ for all continuousf:R→R satisfying suitable integrability conditions. What then can we say about thedistribution of the points {x jn} j=1 n ,n≥1? Roughly speaking, the conclusion of this paper is thathalf the points are distributed like zeros of orthogonal polynomials forw, and half may bearbitrarily distributed. Thus half the points haveNevai-Ullmann distribution of order α, and the rest are arbitrarily distributed. We also describe the possible distributions of the integration points, when the ruleI n has precision other thann-1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Constructive approximation 9 (1993), S. 41-58 
    ISSN: 1432-0940
    Keywords: Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} f(x_{jn} )} $$ is aninterpolatory integration rule of numerical integration, that is, $$I_n [f]: = \int\limits_{ - 1}^1 {P(x)dx,} degree(P)〈 n.$$ Suppose, furthermore, that, for each continuousf:[−1, 1]→R, $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - 1}^1 {f(x)dx.} $$ What can then be said about thedistribution of the points $$\{ x_{jn} \} _{1 \leqslant j \leqslant n} $$ n→∞? In all the classical examples they havearcsin distribution. More precisely, if $$\mu _n : = \frac{1}{n}\sum\limits_{j = 1}^n {\delta _{x_{jn} } } $$ is the unit measure assigning mass 1/n to each pointx jn, then, asn→∞ $$d\mu _n (x)\mathop \to \limits^* \upsilon (x)dx: = \frac{1}{\pi }(\arcsin x)'dx = \frac{{dx}}{{\pi (1 - x^2 )^{1/2} }}.$$ Surprisingly enough, this isnot the general case. We show that the set of all possible limit distributions has the form 1/2(v(x) dx+dv(x)), wherev is an arbitrary probability measure on [−1, 1]. Moreover, given any suchv, we may find rulesI n,n≥1, with positive weights, yielding the limit distribution 1/2v(x) dx+dv(x)). We also consider generalizations when the quadratures have precision other thann−1, and when we place a weight σ in our integral.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...