Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Enzyme modulation ; Nitrate reductase ; Protein kinase ; Protein phosphorylation ; Protein purification ; Spinacia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using a three-step purification procedure, two protein fractions which catalyzed the ATP-dependent in-activation of nitrate reductase (NR) were obtained from spinach (Spinacia oleracea L.) leaf extracts. Purification involved ammonium-sulfate fractionation, anion-exchange chromatography and size-exclusion chromatography. The capacity of the fractions to inactivate NR by preincubation with ATP was examined by using as target either a crude NR-ammonium sulfate precipitate or partially purified NR (ppNR). The fractions were also examined for protein-kinase activity by measuring the phosphorylation of histone III S (or casein) withγ-[32P]ATP as substrate, and subsequent SDS-PAGE, autoradiography and liquid scintillation counting of cut-off histone bands. The two proteins had apparent molecular weights in the 67-kDa and 100-kDa region (termed P67 and P100, respectively). Neither P67 nor P100 alone was able to inactivate ppNR by preincubation with ATP. However, when P100 and P67 were added together to ppNR, ATP-dependent inactivation was observed, with a half-time of about 10 min. The P67, but not P100 had histone-kinase activity (casein was not phosphorylated). Using the partially purified system, various compounds were examined as possible effectors of NR inactivation. Sugar phosphates had little effect on the inactivation of NR. Addition of AMP at very high concentrations (5 mM), and removal of Mg2+ by excess EDTA also prevented the inactivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Enzyme modulation ; Nitrate reductase ; Protein kinase ; Protein phosphorylation ; Protein purification ; Spinacia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using a three-step purification procedure, two protein fractions which catalyzed the ATP-dependent in-activation of nitrate reductase (NR) were obtained from spinach (Spinacia oleracea L.) leaf extracts. Purification involved ammonium-sulfate fractionation, anion-exchange chromatography and size-exclusion chromatography. The capacity of the fractions to inactivate NR by preincubation with ATP was examined by using as target either a crude NR-ammonium sulfate precipitate or partially purified NR (ppNR). The fractions were also examined for protein-kinase activity by measuring the phosphorylation of histone III S (or casein) with γ-[32P]ATP as substrate, and subsequent SDS-PAGE, autoradiography and liquid scintillation counting of cut-off histone bands. The two proteins had apparent molecular weights in the 67-kDa and 100-kDa region (termed P67 and P100, respectively). Neither P67 nor P100 alone was able to inactivate ppNR by preincubation with ATP. However, when P100 and P67 were added together to ppNR, ATP-dependent inactivation was observed, with a half-time of about 10 min. The P67, but not P100 had histone-kinase activity (casein was not phosphorylated). Using the partially purified system, various compounds were examined as possible effectors of NR inactivation. Sugar phosphates had little effect on the inactivation of NR. Addition of AMP at very high concentrations (5 mM), and removal of Mg2+ by excess EDTA also prevented the inactivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...