Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 24 (1992), S. 147-167 
    ISSN: 1573-6881
    Keywords: Proton transport ; biomembranes ; infrared ; membrane protein ; energy transduction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Bacteriorhodopsin (bR) is a light-driven proton pump whose function includes two key membrane-based processes, active transport and energy transduction. Despite extensive research on bR and other membrane proteins, these processes are not fully understood on the molecular level. In the past ten years, the introduction of Fourier transform infrared (FTIR) difference spectroscopy along with related techniques including time-resolved FTIR difference spectroscopy, polarized FTIR, and attenuated total reflection FTIR has provided a new approach for studying these processes. A key step has been the utilization of site-directed mutagenesis to assign bands in the FTIR difference spectrum to the vibrations of individual amino acid residues. On this basis, detailed information has been obtained about structural changes involving the retinylidene chromophore and protein during the bR photocycle. This includes a determination of the protonation state of the four membrane-embedded Asp residues, identification of specific structurally active amino acid residues, and the detection of protein secondary structural changes. This information is being used to develop an increasingly detailed picture of the bR proton pump mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...