Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Sulfate metabolism ; Protein synthesis ; Marine bacteria ; Pseudomonas halodurans ; Alteromonas luteo-violaceus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sulfate concentration in the growth medium exerted a strong influence on the sulfur content of protein in two marine bacteria, Pseudomonas halodurans and Alteromonasluteo-violaceus, but the distribution of sulfur in major biochemical fractions was not affected. 90% of the total cellular sulfur was contained in low molecular weight organic compounds and protein; inorganic sulfate was not an important component. The sulfur content of isolated protein and total cellular sulfur increased in proportion to the external sulfate concentration for both bacteria, reaching a maximum at about 100–250 μM. The growth rate of P. halodurans only was dependent on the sulfate concentration. Sulfur starvation of cells labeled to equilibrium with 35S-sulfate resulted in a rapid decrease in low molecular weight organic S with a concommitant increase in alcohol soluble (P. halodurans) or residue protein (A. luteo-violaceus). Although cell division was prevented, total protein increased in both bacteria, resulting in synthesis of sulfur-deficient protein. This effect was most pronounced in P. halodurans. Addition of 35S-sulfate to sulfur-starved A. luteo-violaceus further demonstrated that sulfur metabolism was restricted primarily to the synthesis and utilization of sulfurcontaining protein precursors. The low molecular weight organic S pool was replenished rapidly, and the pool size per cell reached twice the normal value before cell division resumed. Incorporation into protein was very rapid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Marine bacteria ; Sulfur metabolism ; Protein synthesis ; Pseudomonas halodurans ; Alteromonas luteoviolaceus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Analysis of the distribution of 35S-sulfate and 14C-glutamate in major biochemical components of the two marine bacteria, Pseudomonas halodurans and Alteromonas luteo-violaceus, was compared with cell density and total cellular protein during exponential growth in batch culture. For both organisms, the sulfur distribution was restricted principally to the low molecular weight organic and protein fractions, which together accounted for over 90% of the total sulfur. Carbon was more widely distributed, with these two fractions containing only 70% of the total label. Growth rate constants calculated from increases in cell numbers, protein, and 35S and 14C in the various fractions indicated nearly balanced growth in A. luteo-violaceus, with constants derived from all biosynthetic parameters agreeing within 5% during the exponential phase. In contrast, protein synthesis and 35S incorporation into residue protein constants were 30% higher than constants derived from cell counts and incorporation of 14C in P. halodurans. Therefore the cellular protein content P. halodurans varied over a two-fold range, with maximum protein per cell in the late exponential phase. A distinct reduction in the rate constants for total protein and 35S incorporation into residue protein foreshadowed entry into the stationary phase more than one generation before other parameters. Incorporation of 35S-sulfate into residue protein paralleled protein synthesis in both bacteria. The weight percent S in protein agreed well with the composition of an “average protein” derived from the literature. Sulfur incorporation into protein may be a useful measurement of marine bacterial protein synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...