Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 227 (1995), S. 3-11 
    ISSN: 1572-946X
    Keywords: Radio Astronomy ; Plasma Astrophysics ; Large Scale Structure ; Filaments ; Formation of Galaxies ; Magnetic Fields ; Active Galactic Nuclei ; Quasars ; Abundance of Light Elements ; Redshifts ; Microwave Background
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The year 1996 marks the Centennial Celebration of the founding of Plasma Astrophysics and Cosmology; its origins may be traced to the seminal research first published by Kristian Birkeland in 1896. This special workshop issue reports on advances in issues of importance to the plasma universe; topics as timely as when first raised a century ago.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 227 (1995), S. 97-107 
    ISSN: 1572-946X
    Keywords: Plasma Cosmology ; Galaxies ; Filamentation ; Electrical Currents ; Quasars ; Double Radio Galaxies ; Jets
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract One of the earliest predictions about the morphology of the universe is that it be filamentary (Alfvén, 1950). This prediction followed from the fact that volumewise, the universe is 99.999% matter in the plasma state. When the plasma is energetic, it is generally inhomogeneous with constituent parts in motion. Plasmas in relative motion are coupled by the currents they drive in each other and nonequilibrium plasma often consists of current-conducting filaments. In the laboratory and in the Solar System, filamentary and cellular morphology is a well-known property of plasma. As the properties of the plasma state of matter is believed not to change beyond the range of our space probes, plasma at astrophysical dimensions must also be filamentary. During the 1980s a series of unexpected observations showed filamentary structure on the Galactic, intergalactic, and supergalactic scale. By this time, the analytical intractibility of complex filamentary geometries, intense self-fields, nonlinearities, and explicit time dependence had fostered the development of fully three-dimensional, fully electromagnetic, particle-in-cell simulations of plasmas having the dimensions of galaxies or systems of galaxies. It had been realized that the importance of applying electromagnetism and plasma physics to the problem of radiogalaxy and galaxy formation derived from the fact that the universe is largely aplasma universe. In plasma, electromagnetic forces exceed gravitational forces by a factor of 1036, and electromagnetism is ≈ 107 times stronger than gravity even in neutral hydrogen regions, where the degree of ionization is a miniscule 10−4. The observational evidence for galactic-dimensioned Birkeland currents is given based on the direct comparison of the synchrotron radiation properties of simulated currents to those of extra-galactic sources including quasars and double radio galaxies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...