Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Neuronal uptake ; Initial rates of amine uptake ; Lag period for amine uptake ; Cocaine ; Rabbit heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Hearts were obtained from normal or reserpine-pretreated rabbits and perfused at a constant rate (3.6 ml·g−1·min−1) with Tyrode's solution containing 14C- or 3H-sorbitol and various concentrations of 3H-(−)noradrenaline (NA), 14C-(+)NA or 3H-(±)metaraminol; when NA was used, monoamine oxidase and catechol-O-methyl transferase were inhibited. During perfusion for 2 min the arterio-venous difference for 3H and 14C activity (and in this way the removal of amine and sorbitol from the perfusion fluid) was determined at intervals of 5 s. The uptake of amine into intracellular spaces of the heart was obtained by subtraction of the removal of sorbitol from that of amine; it was cumulatively added and plotted against time (uptake curve). Uptake was overwhelmingly neuronal. 2. The uptake curves were sigmoidal: after a brief initial lag period, uptake curves became linear; there-after, the slope of the curves decreased. The last phase of divergence from linearity occurred the earlier and was the more pronounced, the higher the amine concentration. It was interpreted to indicate that neuronal efflux of amine then began to reduce net uptake. 3. From the slope of the linear phase of the uptake curves initial rates of amine transport were obtained. They were saturable with increasing amine concentrations and obeyed Michaelis-Menten kinetics. The apparent K m values of the three amines were similar in magnitude and ranged from 2.9 to 5.9 μM. Uptake was stereoselective in that the V max of (+)NA was significantly lower than that of (−)NA. Pretreatment with reserpine affected neither the K m nor the V max for uptake. Cocaine was a potent competitive inhibitor of amine transport (K i=0.5–1.0 μM). 4. The intercept of the linear phase of the uptake curves on the time axis (t lag) (corrected for the time necessary for transit through the dead space) was taken as a measure of the lag period. It declined when uptake was progressively saturated (or inhibited) by increasing substrate (or cocaine) concentrations. Moreover, t lag was always linearly correlated with the fraction of amine removed from the perfusion fluid. These findings indicate that the equilibration of the uptake sites with the substrate concentration in the perfusion fluid is delayed by the uptake process itself, especially under low saturation conditions (i.e., when S〈K m).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 304 (1978), S. 147-155 
    ISSN: 1432-1912
    Keywords: Rate constant for efflux of amine ; Isoprenaline ; Simulated efflux curves ; Extraneuronal mechanism ; Mathematical model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Rat hearts were perfused with 0.1 μM 3H-isoprenaline for 10 min in the presence of 10 μM U-0521 to inhibit catechol-O-methyl transferase (COMT) and then washed out with amine-free solution. Analysis of efflux curves revealed a preferential filling of one (compartment III) of the two extraneuronal compartments described by Bönisch et al. (1974). U-0521 inhibited the efflux of isoprenaline from compartment III. Omission of U-0521 from the wash out solution quickly restored COMT activity. It was then possible to determine the rate constant for the efflux (k s) of isoprenaline from rate of efflux and amine content of tissue. 2. A procedure is developed which permits the calculation of k s from efflux curves for amine and metabolite without any need for determining the amine content of the tissue. With this procedure, k s can be determined even when there is a “bound fraction” (i.e., a second compartment, the amine content of which does not contribute to the experimentally determined efflux). The procedure is based on the fact that, for a single compartment in which the amine is metabolized and from which there is efflux of amine and metabolite, parallel efflux curves (i.e., plots of log rate of efflux against time) are obtained, if the rate constant for the efflux of the metabolite (k p) is higher than the rate constant for the loss of amine from the compartment (k system). The activity of the metabolizing enzyme determines k system and the ratio “initial rate of efflux of metabolite/initial rate of efflux of amine” (F 0). 3. A mathematical model (simulating metabolism in, and efflux of amine and metabolite from a single compartment) was used to determine the distortion of F 0 by “k system/k P” (when k P limits the efflux of the metabolite). An estimate of k s obtained from F 0 and from k system agrees well with the estimate of k s obtained directly (see 1, above).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 302 (1978), S. 275-283 
    ISSN: 1432-1912
    Keywords: Rate of perfusion ; Neuronal uptake ; Accessibility of neuronal uptake sites ; Perfusion pressure ; Rabbit heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Rabbit hearts (with monoamine oxidase and catechol-O-methyl transferase inhibited) were obtained from reserpine-pretreated animals. They were perfused at rates ranging from 1.3–11.3 ml·g−1·min−1 with 0.1 mM 14C-sorbitol and various concentrations of 3H-(−)noradrenaline (NA). From measurements of the arterio-venous concentration difference of 3H and 14C activity the removal of NA and sorbitol from the perfusion fluid was followed for 2–3 min at intervals of 5 s. The uptake of NA into intracellular spaces of the heart (known to be over-whelmingly into sympathetic nerve terminals) was obtained by subtracting the removal of sorbitol from that of NA. If was cumulated and plotted against time. 2. The progress curves of NA uptake were sigmoid in shape: following a lag period, uptake proceeded at first at a constant initial rate and from then on at gradually decreasing rates. Irrespective of the NA concentration used, the lag period became shorter and the initial rate of uptake increased whenever the rate of perfusion was increased. Furthermore, at high rates of perfusion the initial rate was maintained for a shorter time than at low ones. 3. At any given perfusion rate, the initial rates of NA uptake obeyed Michaelis-Menten kinetics. While changes of the rate of flow did not alter the apparent K m (range: 2.2–2.4 μM), a rectangular hyperbolic relationship was found between V max and the perfusion rate. The V max was half-maximal at a rate of flow of 2.7 ml·g−1·min−1 and approached a maximum value of 9.0 nmoles·g−1·min−1. 4. From the lack of change in the K m it can be concluded that the uptake sites of the perfused heart are functionally arranged in parallel. The change in V max, on the other hand, indicate that the accessibility of the sites is limited by the rate of perfusion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 305 (1978), S. 51-63 
    ISSN: 1432-1912
    Keywords: Isoprenaline ; Submaxillary gland ; Extraneuronal catecholamine uptake ; “O-methylating systems” ; Corticosteroids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The uptake and O-methylation of 3H-(±)isoprenaline was studied in slices of the rat submaxillary gland. 2. The initial uptake of 3H-isoprenaline after inhibition of catechol-O-methyl transferase (COMT) was described by a single saturable process with relatively high K m (311 μM) and V max (101 nmoles·g−1·min−1). Both corticosterone and normetanephrine were competitive inhibitors of uptake. 3. When examined at substrate concentrations lower than the K m for uptake (and after block of COMT), 3H-isoprenaline distributed into two compartments in the tissue which approached equilibrium with half times of 2.4 and 15.8 min. The filling of both compartments was inhibited by corticosterone or phenoxybenzamine and also by high-K+ medium (in which 118 mM NaCl of the incubation medium had been replaced by KCl), but remained unaffected on substituting 118 mM NaCl with Tris-HCl. 4. In tissues in which COMT was not inhibited, the metabolism of 3H-isoprenaline to 3H-O-methylisoprenaline proceeded at a constant rate from the beginning of the incubation with the amine. When the substrate concentration was very low, little unchanged 3H-isoprenaline was found in the tissue. On the other hand, at high substrate concentrations the parent amine accumulated in the tissue, and at a time when 0-methylation had reached a steady state, the accumulation of 3H-isoprenaline was continuing. 5. The formation of 3H-O-methylisoprenaline was impaired by the presence of corticosterone, normetanephrine, phenoxybenzamine or 17-β-oestradiol with no indication of inhibition of COMT. While lowering the external Na+ concentration (on replacing 118 mM NaCl by 236 mM sucrose) did not affect the formation of 3H-O-methylisoprenaline, replacement of 118 mM NaCl by KCl reduced it. 6. The dependence of the steady-state rate of formation of 3H-O-methylisoprenaline on the substrate concentration in the incubation medium showed that two saturable components participated in the O-methylation of 3H-isoprenaline (low K m system: K m =7.2 μM and V max=1.2 nmoles·g−1·min−1; high-K m system: K m =339 μM and V max=4.6 nmoles·g−1·min−1). Corticosterone and normetanephrine competitively inhibited both the low-K m and the high-K m O-methylation. 7. The results indicate that the submaxillary gland of the rat resembles other tissues in having a low-K m (high-affinity) “O-methylating system” as well as a high-K m (low-affinity) extraneuronal uptake mechanism for catecholamines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...