Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cluster science 5 (1994), S. 173-184 
    ISSN: 1572-8862
    Keywords: Rhenium ; dimetal comptexes ; phosphine ligands ; carboxylatebridged complexes ; redox chemistry ; preparation ; structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The reactions of the quadruply bonded dirhenium(III) carboxylatescis-Re2(μ-O2CR)2X4L2 (X=CI or Br; L=a monodentate donor) with monodentate, bidentate, and tridentate phosphine donors result in several types of redox behavior, usually involving partial or complete reductive decarboxylation of the dirhenium unit. Examples of dirhenium(VI, II), dirhenium(IV, II), dirhenium(III, II), and dirhenium(II, II) complexes, in which Re-Re bond orders of 4, 3.5, 3, l, or zero are encountered, have been isolated and repre-sentative examples structurally characterized. The course of these reactions is dependent upon the nature of the phosphine. The scope of this remarkably rich chemistry is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8862
    Keywords: Rhenium ; clusters ; hydrido-bridged ; hydrosulfido-bridged ; preparation ; structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The reactions of Re2X4(μ-dppm)2 (X=Cl or Br; dppm=Ph2PCH2PPh2) with H2S in THF afford the dirhenium (III) complexes Re2(μ-H)(μ-SH)X4(μ-dppm)2, the first examples of the oxidative addition of an S-H unit across an electron-rich metal-metal triple bond. The bromide complex Re2(μ-H)(μ-SH)Br4(μ-dppm)2 (C2H5)2O crystallizes in the space group P21/n witha=16.631(2) Å,b=15.967(3) Å,c=19.904(2) Å, β=92.698(7)°,V=5279(2) Å3, andZ=4. The structure which was refined toR=0.053 (R w=0.070) for 4903 data withI〉3.0σ(I), shows the presence of an edge-shared bioctahedral geometry with a very short Re-Re distance of 2.4566(7) Å. While the hydrogen atoms of the μ-H and μ-SH ligands were not located in the X-ray structure determination, their presence is confirmed by IR and1H NMR spectroscopy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-8862
    Keywords: Rhenium ; dirhenium complexes ; rhenium-rhenium multiple bonds ; isocyanide ligands ; carbonyl ligand ; structural isomers ; crystal structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The monocarbonyl complex Re2Cl4(µ-dppm)2(CO) reacts with xylyl isocyanide in acetonitrile to afford the bioctahedral complex (CO)Cl2Re(µ-dppm)2 ReCl2(CNxyl), 2b. This is a different structural isomer from the edge-sharing bioctahedral complex Cl2Re(µ-Cl)(µ-dppm)2ReCl(CNxyl) or this same stoichiometry which A formed when acetone is be reaction solvent. The complex2b reacts with a further equivalent of xylNC in the presence of TlO3SCF3 in dichloromethane to form a red complex of composition [Re2Cl3(µ-dppm)2 (CO)(CNxyl)2]O3SCF3. 3, which has the open bioctahedral structure [(xylNC)2ClRe(µ-dppm)2ReCl2(CO)]O3SCF3. This is a third isomeric form of this dirhenium cation: the previously isolated green and yellow forms have edge-sharing bioctahedral structures. Crystal data for3 at 295 K: orthorhombic space group Pbca (No. 61) witha=22.654(5) Å,b=22.717(4) Å,c=27.324(4) A,V= 14061(7) Å3, andZ = 8. The structure was refined to R = 0.059 (R, = 0.134 ) for 14164 data. The Re-Re distance is 2.3833(8) Å.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-8862
    Keywords: Rhenium ; dimetal clusters ; hydrido-complexes ; phosphidobridged ; preparation ; structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Diphenylphosphine oxidatively adds to the Re≡Re bonds of Re2 X 4(μ-dppm)2 (X=Cl or Br; dppm=Ph2PCH2PPh2) and Re2Cl4(μ-dpam)2 (dpam=Ph2AsCH2AsPh2) to afford the dirhenium(III) complexes Re2(μ-X)(μ-PPh2)HX 3(μ-LL)2. The dppm complexes have also been prepared from the reactions of Re2(μ-O2CCH3)X 4(μ-dppm)2 with Ph2PH, and a similar strategy has been used to prepare Re2(μ-Cl)(μ-PPh2)HCl3(μ-dmpm)2 (dmpm=Me2PCH2PMe2) from Re2(μ-O2CCH3)Cl4(dmpm)2. Phenylphosphine likewise reacts with Re2 X 4(μ-dppm)2 to give Re2(μ-X)(μ-PHPh)HX 3(μ-dppm)2. An X-ray crystal structure determination on Re2(μ-Cl)(μ-PPh2)HCl3(μ-dppm)2 confirms its edge-shared bioctahedral structure. This complex crystallizes in the space group $$R\bar 3$$ (No. 148) witha=21.699(3) Å, α=84.50(4)°,V=10084(5) Å3, andZ=6. The structure was refined toR=0.049 (R w 0.069) for 5770 data withI〉3.0σ(I). The Re-Re distance is 2.5918(7) Å. Oxidation of the bromide complex Re2(μ-Br)(μ-PPh2)HBr3(μ-dppm)2 with NOPF6 produces the unusual dirhenium(III, II) cation [Re2(μ-H)(μ-Br)[P(O)Ph2]Br2(NO)(μ-dppm)2]+ which has been structurally characterized as its perrhenate salt, [Re2(μ-H)(μ-Br)[P(O)Ph2]Br2(NO)(μ-dppm)2]ReO4 · 2CH2Cl2. This complex crystallizes in the space group $$P\bar 1$$ (No. 2) witha=14.187(7) Å,b=16.419(5) Å,c=16.729(5) Å, α=98.76(2)°, β=110.11(3)°, γ=104.66(3)°,V=3414(6) Å3,Z=2. The structure was refined toR=0.040 (R w =0.051) for 5736 data withI〉3.0σ(I). The presence of a phosphorus-bound [P(O)Ph2]− ligand, a linear nitrosyl and a bridging hydrido ligand has been confirmed. The Re-Re distance is 2.6273(8) Å.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-8862
    Keywords: Rhenium ; dirhenium complexes ; rhenium–rhenium multiple bonds ; isocyanide ligands ; carbonyl ligand ; structural isomers ; crystal structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The reaction of the unsymmetrical, coordinatively unsaturated dirhenium(II) complex [(XylNC)(OC)CIRe(μ-dppm)2ReCl2]O3SCF3 (dppm = Ph2PCH2PPh2) with one equivalent of XylNC in CH2Cl2 affords a fifth structural isomer of the [Re2Cl3(μ-dppm)2(CO)(CNXyl)2] + cation; this is believed to have a CO-bridged structure of the type [(XylNC)ClRe(μ-Cl)(μ-CO)(μ-dppm)2ReCl(CNXyl)]+. The latter complex reacts with a further equivalent of XylNC in the presence of Tl+ to form the [Re2Cl2(μ-dppm)2(CO)(CNXyl)3]2+ cation, which has been shown by IR spectroscopy, and by the X-ray crystallographic characterization of its neutral congener Re2Cl2(μ-dppm)2(CO)(CNXyl)3, to contain a very weak and unsymmetrical CO bridge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...