Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Key words Disease resistance ; Rice blast ; RFLPs ; Recombinant inbred lines ; Pre-isogenic lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To increase the available set of near-isogenic lines (NILs) for blast-resistance in rice, we have developed a general method for establishing NILs from populations of fixed recombinants that have been used for gene mapping. We demonstrated the application of this method by the selection of lines carrying genes from the rice cultivar Moroberekan. Moroberekan is a West African japonica cultivar that is considered to have durable resistance to rice blast. Multiple genes from Moroberekan conferring complete and partial resistance to blast have previously been mapped using a recombinant inbred (RI) population derived from a cross between Moroberekan and the highly and broadly susceptible indica cultivar CO39. To analyze individual blast-resistance genes, it is desirable to transfer them individually into a susceptible genetic background. This RI population, and the associated data sets on blast reaction and restriction fragment length polymorphism (RFLP) genotypes, were used for selection of lines likely to carry individual blast-resistance genes and a minimum number of chromosomal segments from Moroberekan. Because skewed segregation in the RI population favored CO39 (indica) alleles, resistant lines carrying 8.7–17.5% of Moroberekan alleles (the proportion expected after two or three backcrosses) could be selected. We chose three RI lines carrying different complete resistance genes to blast and two RI lines carrying partial resistance genes to blast as potential parents for the development of NILs. These lines were subjected to genetic analysis, which allowed clarification of some issues that could not be resolved during the initial gene-mapping study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Disease resistance ; Rice blast ; RFLPs ; Recombinant inbred lines ; Pre-isogenic lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To increase the available set of near-isogenic lines (NILs) for blast-resistance in rice, we have developed a general method for establishing NILs from populations of fixed recombinants that have been used for gene mapping. We demonstrated the application of this method by the selection of lines carrying genes from the rice cultivar Moroberekan. Moroberekan is a West African japonica cultivar that is considered to have durable resistance to rice blast. Multiple genes from Moroberekan conferring complete and partial resistance to blast have previously been mapped using a recombinant inbred (RI) population derived from a cross between Moroberekan and the highly and broadly susceptible indica cultivar CO39. To analyze individual blast-resistance genes, it is desirable to transfer them individually into a susceptible genetic background. This RI population, and the associated data sets on blast reaction and restriction fragment length polymorphism (RFLP) genotypes, were used for selection of lines likely to carry individual blast-resistance genes and a minimum number of chromosomal segments from Moroberekan. Because skewed segregation in the RI population favored CO39 (indica) alleles, resistant lines carrying 8.7–17.5% of Moroberekan alleles (the proportion expected after two or three backcrosses) could be selected. We chose three RI lines carrying different complete resistance genes to blast and two RI lines carrying partial resistance genes to blast as potential parents for the development of NILs. These lines were subjected to genetic analysis, which allowed clarification of some issues that could not be resolved during the initial gene-mapping study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 33 (1992), S. 1119-1138 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A geometrically non-linear thin shell element made from classical laminated materials is developed from three dimensional continuum concepts that admits arbitrarily large displacements and rotations. The development shows how explicit integration through the thickness of the element can be accomplished without sacrificing significant accuracy of the element.Computations obtained via the present formulation are compared with four test problems for which numerical data are available. All computations were carried out using the Crisfield-Riks arc length continuation algorithm with a full Newton-Raphson iterative scheme. Excellent agreement is observed for each test problem.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 13 (1989), S. 101-107 
    ISSN: 0363-9061
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...