Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Integral equations and operator theory 38 (2000), S. 222-250 
    ISSN: 1420-8989
    Schlagwort(e): Primary 34A55 ; 47E05 ; Secondary 34B20 ; 34L05 ; 47B25
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Mathematik
    Notizen: Abstract We consider a singular two-dimensional canonical systemJy′=−zHy on [0, ∞) such that at ∞ Weyl's limit point case holds. HereH is a measurable, real and nonnegative definite matrix function, called Hamiltonian. From results of L. de Branges it follows that the correspondence between canonical systems and their Titchmarsh-Weyl coefficients is a bijection between the class of all Hamiltonians with trH=1 and the class of Nevanlinna functions. In this note we show how the HamiltonianH of a canonical system changes if its Titchmarsh-Weyl coefficient or the corresponding spectral measure undergoes certain small perturbations. This generalizes results of H. Dym and N. Kravitsky for so-called vibrating strings, in particular a generalization of a construction principle of I.M. Gelfand and B.M. Levitan can be shown.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...