Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Microtubule-associated protein-2 ; Somatodendritic distribution ; Alzheimer's disease ; Senile plaque neurites ; Paired helical filaments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have developed monoclonal antibodies that detect normal microtubule-associated protein-2 (MAP2) epitopes in routinely fixed, paraffin-embedded tissue. The somatodendritic distribution of MAP2 in bovine and human nervous tissue was confirmed with several of these antibodies. Furthermore, some of these antibodies immunohistochemically labeled certain pathological structures in Alzheimer brain, especially neurites in senile plaques. Electron microscopic observations, however, indicate that these MAP2 epitopes are not located in the Alzheimer paired helical filaments themselves, but in amorphous granular structures coexistent with them. While the pathological nature of these structures is undetermined, they may represent artefactual modifications of normal cytoskeletal components.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 48 (2000), S. 147-163 
    ISSN: 1573-515X
    Keywords: carbon sequestration ; crop rotation ; greenhouse gas mitigation ; no-till ; soil organic matter ; soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions. Increasing soil C stocks requires increasing C inputs and/or reducing soil heterotrophic respiration. Management options that contribute to reduced soil respiration include reduced tillage practices (especially no-till) and increased cropping intensity. Physical disturbance associated with intensive soil tillage increases the turnover of soil aggregates and accelerates the decomposition of aggregate-associated SOM. No-till increases aggregate stability and promotes the formation of recalcitrant SOM fractions within stabilized micro- and macroaggregate structures. Experiments using13 C natural abundance show up to a two-fold increase in mean residence time of SOM under no-till vs intensive tillage. Greater cropping intensity, i.e., by reducing the frequency of bare fallow in crop rotations and increasing the use of perennial vegetation, can increase water and nutrient use efficiency by plants, thereby increasing C inputs to soil and reducing organic matter decomposition rates. Management and policies to sequester C in soils need to consider that: soils have a finite capacity to store C, gains in soil C can be reversed if proper management is not maintained, and fossil fuel inputs for different management practices need to be factored into a total agricultural CO2 balance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...