Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 175 (1987), S. 289-301 
    ISSN: 1432-0568
    Keywords: Dura mater encephali ; Sensory receptors ; Nerve fibres ; Vascular bed ; Lymphatic vessel ; Nociception ; Headache
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The dura mater encephali of the rat is richly supplied by myelinated (A-axons) and unmyelinated (C-axons) nerve fibres. For the supratentorial part the main nerve supply stems from all three branches of the trigeminal nerve. Finally, 250 myelinated and 800 unmyelinated nerve fibres innervate one side of the supratentorial part. The vascular bed of the dura mater exhibits long postcapillary venules up to 200 μm in length with segments of endothelial fenestration. Lymphatic vessels occur within the dura mater. They leave the cranial cavity through the openings of the cribriform plate, rostral to the bulla tympani together with the transverse sinus, and the middle meningeal artery. The perineural sheath builds up a tube-like net containing the A- and C-axons. It is spacious in the parietal dura mater and dense at the sagittal sinus along its extension from rostral to caudal and at the confluence of sinuses. Terminals of both the A- and C-axons are of the unencapsulated type. Unencapsulated Ruffini-like receptors stemming from A-axons are found in the dural connective tissue at sites where superficial cerebral veins enter the sagittal sinus and at the confluence of sinuses. The terminations of single A-axons together with C-fibre bundles mix up in their final course in one Schwann cell to build up multiaxonal units or terminations (up to 15 axonal profiles). A morphological differentiation is made due to the topography of these terminations; firstly, in different segments of the vascular bed: postcapillary venule, venule, the sinus wall, lymphatic vessel wall, and secondly, within the dura mater: inner periosteal layer, collagenous fibre bundles of the meningeal layer and at the mesothelial cell layer of the subdural space.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0568
    Keywords: Tachyglossus aculeatus (echidna) ; Echidna bill ; Sensory receptors ; Electroreceptor ; Mechanoreceptor ; Trigeminal nerve ; Monotreme ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The gross anatomy and nerve supply of the bill of echidna (Tachyglossus aculeatus) is described in relation to its function as an outstanding sensory organ. The sensory innervation of the skin of the echidna snout was investigated by means of frontal serial sections, after decalcification of the specimens. A comprehensive light and electron microscopic description of the location and fine structure of cutaneous sensory receptors of the trigeminal system was made by this means. The encapsulated and non-encapsulated Ruffini receptors, the types of other free receptors in the connective tissue and the Merkel cell receptor do not differ morphologically from those of higher mammals, whereas the pacinian-like corpuscle shows a unique organization of its outer core. This is composed of large perineural cells containing a unique reticulum of parallel-orientated endoplasmic membranes. Lamellated corpuscles, seen in isolation or in association with push rods, are numerous in the snout and in the tip of the tongue of echidna. Push rod receptor organs occur in the hairless skin of the bill with a very dense array at its rostral end and in the pseudopalatal ridges. Gland duct receptors are restricted to the skin adjacent to the nostrils and the mouth opening, including the pseudopalatal plates. Only about one quarter of the total number of 400 seromucous glands receive a sensory innervation of their intraepidermal duct segment. Within each innervated gland two types of receptor terminals are identified. The distributions of the different receptor types are mapped for different regions of the skin, the mucous membrane of the nasal and oral vestibule and the tip of the tongue. The fine structure of nerve terminals is discussed from a comparative anatomical point of view, and some speculations are made about possible transduction processes that underlie the known electrophysiological properties. The sensory organs such as the “push rod” and “gland duct receptor”, and most of their sensory terminals, are less differentiated in echidna snout than in the platypus (Ornithorhynchus anatinus) bill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...