Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 19 (1991), S. 109-118 
    ISSN: 1432-1017
    Keywords: Sodium channel ; Patch clamp ; Cerebellar ; granule cells ; Intracellular magnesium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The aim of this study was to determine from macroscopic current analysis how intracellular magnesium ions, Mg i 2+ , interfere with sodium channels of mammalian neurones. It is reported here that permeation across the sodium channel is voltage- and concentration-dependently reduced by Mg i 2+ . This results in a general reduction of sodium membrane conductance and an outward sodium peak current at large positive potentials. 30 mM Mg i 2+ leads to a negative shift of voltage dependence of sodium channel gating parameters, probably due to the surface potential change of the membrane. This shift alone is, however, insufficient to explain the reduction of outward sodium currents. The blockage by Mg i 2+ is decreased upon increasing intracellular or extracellular Na+ concentration, which suggests that Mg?' interferes with sodium permeation by competitively occupying sodium channels. Using a kinetic model to describe the sodium permeation, the dissociation constant (at zero membrane potential) of Mg i 2+ for the sodium channel has been calculated to be 8.65 ± 1.51 mM, with its binding site located at 0.26 ± 0.05 electrical distance from the inner membrane. This dissociation constant is smaller than that of Na i +, which is 83.76 ± 7.60 mM with its binding site located at 0.75 ± 0.23. The low dissociation constant of Mg i 2+ reflects its high affinity for the sodium channel.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 18 (1990), S. 25-32 
    ISSN: 1432-1017
    Keywords: Sodium channel ; Gating currents ; Mammalian cells ; Patch clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Ionic and gating currents from voltage-gated sodium channels were recorded in mouse neuroblastoma cells using the path-clamp technique. Displacement currents were measured from whole-cell recordings. The gating charge displaced during step depolarizations increased with the applied membrane potential and reached saturating levels above 20 mV Prolonged large depolarizations produced partial immobilization of the gating charge, and only about one third of the displaced charge was quickly reversed upon return to negative holding potentials. The activation and inactivation properties of macroscopic sodium currents were characterized by voltage-clamp analysis of large outside-out patches and the single-channel conductance was estimated from nonstationary noise analysis. The general properties of the sodium channels in mouse neuroblastoma cells are very similar to those previously reported for various preparations of invertebrate and vertebrate nerve cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...