Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5001
    Keywords: Channel structure ; Magainin ; Acetylcholine receptor ; Lipid bilayer ; Amphiphilic α-helix ; 15N chemical shift ; Solid-state NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Solid-state NMR spectroscopy was used to determine the orientations of two amphipathic helical peptides associated with lipid bilayers. A single spectral parameter provides sufficient orientational information for these peptides, which are known, from other methods, to be helical. The orientations of the peptides were determined using the15N chemical shift observed for specifically labeled peptide sites. Magainin, an antibiotic peptide from frog skin, was found to lie in the plane of the bilayer. M2δ, a helical segment of the nicotinic acetylcholine receptor, was found to span the membrane, perpendicular to the plane of the bilayer. These findings have important implications for the mechanisms of biological functions of these peptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomolecular NMR 6 (1995), S. 329-334 
    ISSN: 1573-5001
    Keywords: Solid-state NMR ; Magainin ; Membranes ; Oriented samples ; Structure determination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary A three-dimensional 1H chemical shift/1H-15N dipolar coupling/15N chemical shift correlation spectrum was obtained on a sample of specifically 15N-labeled magainin peptides oriented in lipid bilayers between glass plates in a flat-coil probe. The spectrum showed complete resolution of the resonances from two labeled amide sites in all three dimensions. The three orientationally dependent frequencies associated with each resonance enabled the orientation of the peptide planes to be determined relative to the direction of the applied magnetic field. These results demonstrate the feasibility of multiple-pulse spectroscopy in a flat-coil probe, the ability to measure three spectral parameters from each site in a single experiment, and the potential for resolving among many labeled sites in oriented membrane proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...