Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Trauma ; Spinal cord injury ; Edema ; Serotonin ; p-CPA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The possibility that serotonin can modify the early pathological sequences occurring in spinal cord trauma was investigated in a rat model. To that end we took advantage of the possibility of influencing serotonin pharmacologically by treating animals with a serotonin synthesis inhibitor, p-chlorophenylalanine (p-CPA) before the production of the injury and compared the results with injured, untreated controls. A unilateral incision was made into the dorsal horn of the lower thoracic cord (about 2.5 mm deep, 4.5 mm long) and the trauma. The injured region from untreated animals showed macroscopically at that time a pronounced swelling and the water content had increased by 3.5% as compared to intact controls. The segments rostral and caudal to the lesion also exhibited a profound increase in water content. Light microscopy revealed a significant expansion of the spinal cord as compared to controls. The swelling was most pronounced in the gray matter on the injured side. Electron microscopy showed distorted neurons, swollen astrocytes and extracellular edema in the gray matter in and around the primary lesion. There was also a sponginess in the surrounding white matter with disruption of myelin, collapsed axons and widened periaxonal spaces. Pretreatment of the rats with p-CPA significantly reduced the swelling of the injured spinal cord and there was no visible expansion. The ipsilateral edema in the central gray matter was considerable less pronounced as compared to that in untreated animals. The increase in water content was less than 1% in these animals. The neuronal and glial cell changes were also markedly reduced in the drugtreated rats. The disruption of myelin and the vacuolation of the gray matter were much less severe. Our results show that p-CPA can markedly modify the edema and the cellular changes occurring in the traumatic spinal injury and indicate that serotonin is somehow involved in the production of the early, and thus important, pathological events.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 79 (1990), S. 595-603 
    ISSN: 1432-0533
    Keywords: Trauma ; Spinal cord injury ; Microvascular permeability ; Serotonin ; p-Chlorophenylalanine (p-CPA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The possibility that serotonin can take part in the initiation of the increased microvascular permeability occurring in a spinal cord trauma was investigated in a rat model with 131I-sodium and lanthanum as tracers. We influenced the serotonin content in the tissue pharmacologically by treating animals with a serotonin synthesis inhibitor, p-chlorophenylalanine (p-CPA), before the production of the injury and compared the results with injured, untreated controls. A small incision was made in the dorsal horn of the lower thoracic cord. It caused a progressive extravasation of 131I-sodium in the damaged segment, measured after 1,2 and 5 h. Rostral and caudal segments also showed a significant but lower accumulation of 131I-sodium. Lanthanum added to the fixative was used as an ionic tracer detectable by electron microscopy. The endothelial cells of microvessels removed from the perifocal region after 5 h showed a marked increase in the number of lanthanum-filled vesicles. Many endothelial cells had a diffuse penetration of the tracer into the cytoplasm and the basement membrane. However, the tight junctions usually remained closed to lanthanum. Pretreatment with p-CPA markedly reduced the extravasation of 131I-sodium measured at 5 h in the traumatized cord. At the cellular level, the endothelial vesicles filled with lanthanum approached the condition of uninjured animals. The diffuse infiltration of lanthanum into endothelial cells and its spread into the basement membrane of the vascular wall were usually absent. Our results indicate that serotonin plays a role in the initiation of the increased microvascular permeability which occurs in spinal cord injuries.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...