Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Photoacclimation  (2)
  • Stem photosynthesis  (2)
  • Amaranthus  (1)
  • 1
    ISSN: 1432-2048
    Schlagwort(e): Amaranthus ; Carbohydrate accumulation ; Chilling treatment ; Sucrose inhibition of photosynthesis ; Phloem translocation ; Photosynthesis (C4 plant)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Photosynthesis was studied in relation to the carbohydrate status in intact leaves of the C4 plant Amaranthus edulis. The rate of leaf net CO2 assimilation, stomatal conductance and intercellular partial pressure of CO2 remained constant or showed little decline towards the end of an 8-h period of illumination in ambient air (340 μbar CO2, 21% O2). When sucrose export from the leaf was inhibited by applying a 4-h cold-block treatment (1°C) to the petiole, the rate of photosynthesis rapidly decreased with time. After the removal of the cold block from the petiole, further reduction in photosynthetic rate occurred, and there was no recovery in the subsequent light period. Although stomatal conductance declined with time, intercellular CO2 partial pressure remained relatively constant, indicating that the inhibition of photosynthesis was not primarily caused by changes in stomatal aperture. Analysis of the leaf carbohydrate status showed a five- to sixfold increase in the soluble sugar fraction (mainly sucrose) in comparison with the untreated controls, whereas the starch content was the same. Leaf osmotic potential increased significantly with the accumulation of soluble sugars upon petiole chilling, and leaf water potential became slightly more negative. After 14 h recovery in the dark, photosynthesis returned to its initial maximum value within 1 h of illumination, and this was associated with a decline in leaf carbohydrate levels overnight. These data show that, in Amaranthus edulis, depression in photosynthesis when translocation is impaired is closely related to the accumulation of soluble sugars (sucrose) in source leaves, indicating feedback control of C4 photosynthesis. Possible mechanisms by which sucrose accumulation in the leaf may affect the rate of photosynthesis are discussed with regard to the leaf anatomy of C4 plants.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-2048
    Schlagwort(e): Chlorophyll fluorescence ; Growth rate ; Nitrogen and photosynthesis ; Photoacclimation ; Photoinhibition of photosynthesis ; Photosynthesis and N supply ; Quantum yield ; Ulva
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Clonal tissue of the marine chlorophyte macroalga,Ulva rotundata Blid., was transferred from 100 to 1700 μmol photons · m−2 · s−1 under limiting (1.5 μM NH 4 + maximum, N/P=2) and sufficient (15 μM NH 4 + maximum, N/P=20) nitrogen supply at 18° C and 11 h light-13 h darkness daily. Photoinhibition was assayed by light-response curves (photosynthetic O2 exchange), and chlorophyll fluorescence at 77 K and room temperature. Daily surface-area growth rate (μSA) in N-sufficient plants increased sixfold over 3 d and was sustained at that level. During this period, respiration (R d) doubled and light-saturated net photosynthesis capacity (P m) increased by nearly 50%, indicating acclimation to high light. Quantum yield (ϕ) decreased by 25% on the first day, but recovered completely within one week. The ratio of variable to maximum fluorescence (F v/F m) also decreased markedly on the first day, because of an increase in initial fluorescence (F o) and a decrease inF m, and partially recovered over several days. Under the added stress ofN deficiency, μSA accelerated fivefold over 4 d, despite chronic photoinhibition, then declined along with tissue-N. Respiration doubled, butP m decreased by 50% over one week, indicating inability to acclimate to high light. Bothϕ andF v/F m decreased markedly on the first day and did not significantly recover. Changes inF o,F m and xanthophyll-cycle components indicate concurrent photodamage to photosystem II (PSII) and photoprotection by thermal deexcitation in the antenna pigments. Increasing μSA coincided with photoinhibition of PSII. Insufficient diel-carbon balance because of elevatedR d and decliningP m and tissue-N, rather than photochemical damage per se, was the apparent proximate cause of decelerating growth rate and subsequent tissue degeneration under N deficiency inU. rotundata.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-2048
    Schlagwort(e): Chlorophyll fluorescence ; Growth rate ; Nitrogen and photosynthesis ; Photoacclimation ; Photoinhibition of photosynthesis ; Photosynthesis and N supply ; Quantum yield ; Ulva
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Clonal tissue of the marine chlorophyte macroalga, Ulva rotundata Blid., was transferred from 100 to 1700 μmol photons · m−2 · s−1 under limiting (1.5 μM NH 4 + maximum, N/P=2) and sufficient (15 μM NH 4 + maximum, N/P=20) nitrogen supply at 18° C and 11 h light-13 h darkness daily. Photoinhibition was assayed by light-response curves (photosynthetic O2 exchange), and chlorophyll fluorescence at 77 K and room temperature. Daily surface-area growth rate (μSA) in N-sufficient plants increased sixfold over 3 d and was sustained at that level. During this period, respiration (R d) doubled and light-saturated net photosynthesis capacity (P m) increased by nearly 50%, indicating acclimation to high light. Quantum yield (ϕ) decreased by 25% on the first day, but recovered completely within one week. The ratio of variable to maximum fluorescence (F v/F m) also decreased markedly on the first day, because of an increase in initial fluorescence (F o) and a decrease in F m, and partially recovered over several days. Under the added stress of N deficiency, μSA accelerated fivefold over 4 d, despite chronic photoinhibition, then declined along with tissue-N. Respiration doubled, but P m decreased by 50% over one week, indicating inability to acclimate to high light. Both ϕ and F v/F m decreased markedly on the first day and did not significantly recover. Changes in F o, F m and xanthophyll-cycle components indicate concurrent photodamage to photosystem II (PSII) and photoprotection by thermal deexcitation in the antenna pigments. Increasing μSA coincided with photoinhibition of PSII. Insufficient diel-carbon balance because of elevated R d and declining P m and tissue-N, rather than photochemical damage per se, was the apparent proximate cause of decelerating growth rate and subsequent tissue degeneration under N deficiency in U. rotundata.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Oecologia 72 (1987), S. 533-541 
    ISSN: 1432-1939
    Schlagwort(e): δ13C ; Eriogonum inflatum ; Great Basin ; Mojave ; Photosynthetic morphology ; Stem photosynthesis ; Water-use efficiency
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Seasonal patterns in plant morphology, phenology, and physiology were monitored in several populations of Eriogonum inflatum, a desert ephemeral which produces a large photosynthetic inflorescence above a basal leaf rosette. Green stems accounted for 66–77% of whole plant photosynthetic surface area when integrated over a developmental cycle, whereas only 40–67% of the yearly transpirational water loss could be attributed to stems. Stems were found to have lower nitrogen and chlorophyll contents than leaves, and lower stomatal conductance under all physiological conditions encountered. However, because stems occur later in the year than leaves, comparison of physiological patterns was complicated by the two structures being exposed to different climatic regimes during their developmental cycles. Stems exhibited higher δ13C values than leaves, indicating that stems operated at higher water-use efficiencies than leaves, at least during periods when both leaves and stems were present. Higher water-use efficiency in stems of E. inflatum is attributed to both more conservative water use patterns and to their vertical orientation, allowing stems to remain photosynthetically active longer into the dry season after senescence of the horizontal leaf rosette.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Oecologia 72 (1987), S. 542-549 
    ISSN: 1432-1939
    Schlagwort(e): Eriogonum inflatum ; Internal CO2 concentration ; Stem photosynthesis ; Water-use efficiency ; Water stress
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary The gas exchange characteristics of photosynthetic tissues of leaves and stems of Eriogonum inflatum are described. Inflated stems were found to contain extraordinarily high internal CO2 concentrations (to 14000 μbar), but fixation of this internal CO2 was 6–10 times slower than fixation of atmospheric CO2 by these stems. Although the pool of CO2 is a trivial source of CO2 for stem photosynthesis, it may result in higher water-use efficiency of stem tissues. Leaf and stem photosynthetic activities were compared by means of CO2 fixation in CO2 response curves, light and temperature response curves in IRGA systems, and by means of O2 exchange at CO2 saturation in a leaf disc O2 electrode system. On an area basis leaves contain about twice the chlorophyll and nitrogen as stems, and are capable of up to 4-times the absolute CO2 and O2 exchange rates. However, the stem shape is such that lighting of the shaded side leads to a substantial increase in overall stem photosynthesis on a projected area basis, to about half the leaf rate in air. Stem conductance is lower than leaf conductance under most conditions and is less sensitive to high temperature or high VPD. Under most conditions, the ratio C i /C a is lower in stems than in leaves and stems show greater water-use efficiency (higher ratio assimilation/transpiration) as a function of VPD. This potential advantage of stem photosynthesis in a water limited environment may be offset by the higher VPD conditions in the hotter, drier part of the year when stems are active after leaves have senesced. Stem and leaf photosynthesis were similarly affected by decreasing plant water potential.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...