Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1017
    Keywords: 1HNMR ; Metal substitution ; Superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Human copper-cobalt superoxide dismutase in the reduced form has been investigated through 1H NMR techniques. The aim is to monitor the structural properties of this derivative and to compare them with those of reduced and oxidized native superoxide dismutases. The observed signals of the cobalt ligands have been assigned as well as the signals of the histidines bound to copper(I). The latter signals experience little pseudocontact shifts which allow a rough orientation of the magnetic susceptibility tensor in the molecular frame. The connectivities indicate that, although the histidine bridge is broken in the reduced form, the interproton distances between ligands of both ions are essentially the same.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-8773
    Keywords: Copper ; Cobalt ; Nickel ; Superoxide dismutase ; Alkaline phosphatase ; NMR ; Relaxometry ; Nuclear relaxation ; Electronic relaxation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The water-proton nuclear-magnetic-relaxation dispersion profiles have been analyzed for Cu2Zn2-superoxide dismutase (SOD) and Cu2-alkaline phosphatase (AP). The electronic relaxation times are derived, together with structural information. The effect of magnetic coupling with another copper ion in Cu2Cu2SOD and Cu2Cu2AP is discussed. It is shown that the electronic relaxation times of copper(II) essentially do not change. The opposite happens with Cu2Co2SOD, Cu2Co2AP and Cu2Ni2SOD in which fast-relaxing metal ions provide relaxation mechanisms for copper(II) as well. In these cases the systems can be studied through high-resolution NMR spectroscopy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...