Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 224 (1982), S. 527-541 
    ISSN: 1432-0878
    Keywords: Crustacean muscle ; Nerve terminals ; Synapses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The innervation pattern of distal muscle fibers of the opener muscle of walking legs of crayfish (Astacus leptodactylus) was investigated using methylene-blue staining, cobalt infiltration, and electron microscopy. A quantitative analysis of the entire innervation of single muscle fibers was attempted. It was found that instead of the generally assumed parallel array of numerous excitatory and inhibitory terminals, innervation consists of only a few branched terminals. The branches of excitatory and inhibitory terminals lie side-by-side. Both types are characterized by numerous varicosities (see Fig. 9B). The aggregate length of excitatory as well as inhibitory terminals on one muscle fiber is, on the average, about 1,500 μm with a total of 152 varicosities spaced about 10 μm apart. The average diameter of the varicosities is 4.26 μm, that of the connecting thin segments about 0.5 μm. Total terminal surface of motor or inhibitory terminals amounts to about 10,000 μm2 per muscle fiber. There are approximately 2,000 motor synapses on each muscle fiber, but their average total area is only about 6% of the terminal membrane area, or 0.06% of the (idealized) muscle fiber surface. There are conspicuous differences in the postsynaptic specializations associated with excitatory and inhibitory terminals; these are described in detail. The results are discussed in a functional context and with regard to design and results of electrophysiological experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 254 (1988), S. 369-379 
    ISSN: 1432-0878
    Keywords: Hindgut efferents ; Synapses ; HRP labeling ; Orconectes limosus (Crustacea)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The distribution, morphology and synaptic connections of the hindgut efferent neurons in the last (sixth) abdominal ganglion of the crayfish, Orconectes limosus, have been investigated using light and electron microscopy in conjunction with retrograde cobalt/nickel and HRP labeling through the intestinal nerve. The hindgut efferent neurons occur singly and in clusters, and are unipolar. Their axonal projections are uniform and consist of a thick primary neurite with typical lateral projections and limited arborization of varicose fibers in the ganglionic neuropil. They also send lower order axon processes to the ganglionic neural sheath, where they arborize profusely, forming a network of varicose fibers. The majority of the efferent neurons project to the anterior part of the hindgut. HRP-labeled axon profiles are found in both pre- and postsynaptic position in the neuropil of the ganglion. HRP-labeled axon profiles also establish pre- and postsynaptic contacts in the intestinal nerve root. All hindgut efferent terminals contain similar synaptic vesicle populations: ovoid agranular vesicles (50–60 nm) and a few large granular vesicles (100–200 nm). It is suggested that the hindgut efferent neurons in the last abdominal ganglion are involved in: (1) innervation of the hindgut; (2) central integrative processes; (3) “en route” synaptic modification of efferent and afferent signals in the intestinal nerve; (4) neurohumoral modulation of peripheral physiological processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...