Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Key words Molecular markers ; Integrated linkage map ; Tomato ; Lycopersicon species ; AFLP ; RFLP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Two independent F2 populations of Lycopersicon esculentum×L. pennellii which have previously been investigated in RFLP mapping studies were used for construction of a highly saturated integrated AFLP map. This map spanned 1482 cM and contained 67 RFLP markers, 1078 AFLP markers obtained with 22 EcoRI+MseI primer combinations and 97 AFLP markers obtained with five PstI+MseI primer combinations, 231 AFLP markers being common to both populations. The EcoRI+MseI AFLP markers were not evenly distributed over the chromosomes. Around the centromeric region, 848 EcoRI+ MseI AFLP markers were clustered and covered a genetic distance of 199 cM, corresponding to one EcoRI+ MseI AFLP marker per 0.23 cM; on the distal parts 1283 cM were covered by 230 EcoRI+MseI AFLP markers, corresponding to one marker per 5.6 cM. The PstI/MseI AFLP markers showed a more even distribution with 16 PstI/MseI AFLP markers covering a genetic distance of 199 cM around the centromeric regions and 81 PstI/MseI AFLP markers covering a genetic distance of 1283 cM on the more distal parts, corresponding to one marker per 12 and 16 cM respectively. In both populations a large number of loci showed a significant skewed segregation, but only chromosome 10 loci showed skewness that was similar for both populations. This ultra-dense molecular-marker map provides good perspectives for genetic and breeding purposes and map-based cloning.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...