Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Topographic connectivity  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 74 (1989), S. 480-492 
    ISSN: 1432-1106
    Keywords: Spinal cord ; Motoneurons ; Spindle Ia afferents ; Spindle group II afferents ; Connectivity ; Species recognition ; Topographic connectivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Multi-unit spike triggered averaging was used to determine functional connectivity between spindle afferent fibers from the medial gastrocnemius muscle and the motoneurons innervating the medial (homonymous connections) and the lateral gastrocnemius-soleus muscle (heteronymous connections). As many as 288 possible connections between 24 motoneurons and 12 afferent fibers were studied in single, acute experiments. The influences of morphological and topographical factors, as well as of motoneuron species on functional connectivity were analysed. The probability that a motoneuron would receive functional connections from a given population of afferent fibers was related to its size and its proximity to the spinal entry level of the afferent fibers. The faster the axonal conduction velocity of the motoneuron (i.e. the larger the motoneuron) and the closer its location to the entry zone of the afferent fibers, the higher was its probability of receiving functional connections. The greater the conduction velocity (i.e. diameter) of a stretch receptor afferent fiber, the higher was its probability of making functional connections with motoneurons. These relationships were qualitatively similar for homonymous and heteronymous connections. 58% (233/399) of the Ia and group II afferents (combined) had functional connections with homonymous motoneurons, 32% (75/234) with heteronymous motoneurons. However, homonymous and heteronymous motoneurons of similar sizes were equally likely to receive functional connections when located at the same craniocaudal level. Differences in the locations and mean sizes of homonymous and heteronymous motoneurons however, cannot account completely for the observed overall differences in homonymous and heteronymous connectivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...