Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Photosynthesis ; Ferredoxin-NADP+ oxidoreductase ; cDNA Nucleotide sequence ; Transit peptide ; Spinach
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In this paper, we report the structural characterization of several spinach ferredoxin-NADP+ oxidoreductase (FNR) cDNAs ranging in size from 0.9 to 1.5 kilobases. A comparison of the deduced amino acid sequence with the known amino acid sequence determined for the spinach protein establishes that 1.4–1.5 kpb inserts span the full length of the mature protein (314 amino acid residues; Mr = 35,382). These also include an N-terminal 55 amino acid transit peptide as well as maximally 171 and 214 nucleotide 5′ and 3′ untranslated sequences, respectively. Evidence has been obtained that various forms of FNR arise from at least two similar genes. The FNR precursor (369 amino acid residues) has a calculated molecular mass of 41.2 kDa. Comparison of the transit peptide with transit peptides from two other stromal proteins shows little similarity at the level of primary sequence but some common features in secondary structure predictions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Photosynthetic oxygen evolution ; “33 kDa” protein ; cDNA nucleotide sequence ; Transit peptide ; Spinach
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Several cDNA clones encoding the “33 kDa” protein associated with the photosynthetic water oxidation activity of spinach were sequenced. A 1208 bp insert of one of the clones encodes the entire 331 amino acid residues of the precursor protein including 84 amino acids (8.5 kDa) of the amino-terminal transit peptide, 49 bp of the 5′ and 111 bp of the 3′ untranslated segment of the mRNA. The 3′ poly(A) tail starts 19 bp downstream from a putative polyadenylation signal, TATAAA. The hydrophilic mature protein consists of 247 amino acid residues corresponding to an Mr of 26.5 kDa, which is 6.5 kDa smaller than the value determined by SDS-polyacrylamide gel electrophoresis (33–34 kDa), and shows a certain degree of conservation with the putative Mn-complexing active sites of bacterial Mn-dependent superoxide dismutases. The anatomy of the unusually long transit sequence is discussed with regard to current concepts of protein import into and protein routein within the organelle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Photosynthesis ; Rieske iron-sulfur precursor protein ; cDNA nucleotide sequence ; Transit peptide ; Spinach
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Summary Several cDNA clones encoding the entire Rieske FeS-precursor protein of the chloroplast cytochrome b 6 f-complex have been isolated by high density plaque immunoscreening of a phage lambda gt11 cDNA expression library, made from poly A+-RNA of spinach seedlings. The identity of the cDNAs has been confirmed by N-terminal amino acid sequencing of the purified protein. The nucleotide sequence indicates a protein of 247 amino acid residues including a putative transit sequence of 68 amino acids corresponding to molecular masses of 26.3 kDa (precursor) and 18.8 kDa (mature protein; 179 amino acid residues). Alignteins of the sequence with sequences from Rieske FeS-proteins of respiratory electron transport chains, two of bacterial and three of mitochondrial origin, shows little sequence homology, but remarkable similarity in secondary structure including a putative N-terminal transmembrane segment of about 25 residues and the peptides CTHLGCV and CPCHGS in the C-terminal region of the protein that are involved in the binding of the Fe2S2-cluster.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...