Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Triticum aestivum ; Genomic variability ; Mitochondrial DNA ; Somatic tissue culture ; Regeneration ability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Embryogenic and non-embryogenic long-term callus cultures of hexaploid wheat exhibit differences in the organization of their mitochondrial genome. Embryogenic and non-embryogenic fractions of callus cultures initiated from immature embryos of the wheat cultivar “Chinese Spring” have been isolated and subsequently subcultured. DNA-DNA hybridization experiments using labelled cloned wheat mitochondrial DNA fragments have shown that the mitochondrial DNA organization of embryogenic subcultures derived from embryogenic parts of “Chinese Spring” calli is closely related to that of the initial “Chinese Spring” calli, while non-embryogenic subcultures derived from non-embryogenic fragments of “Chinese Spring” calli exhibit a mitochondrial DNA organization similar to that found in non-embryogenic calli derived from cultivar “Aquila”. In addition, somatic tissue cultures initiated from three other non-embryogenic wheat cultivars (“Talent”, “Thésée” and “Capitole”) display mitochondrial DNA arrangements similar to those found in cultivar “Aquila”. These results strongly suggest that, in wheat callus cultures, a particular mitochondrial genome organization is correlated with the ability of cultured cells to regenerate whole plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Triticum aestivum ; Mitochondrial DNA ; Chloroplast DNA ; ATPase alpha subunit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary An internal part of the chloroplast atpA gene has been identified in the mitochondrial DNA of Triticum aestivum. It is located near the 18S-5S ribosomal genes and partially contained within a repeated sequence. Comparison of the transferred sequence with the original ct sequence reveals several nucleotide changes and shows that neither 5′ nor 3′ ends are present in the mt genome. No transcript of this region could be detected by Northern analysis. This sequence is present in mitochondrial genomes of other tetraploid and diploid species of Triticum, also in the vicinity of the 18S-5S ribosomal genes, suggesting a unique transfer event. The date of this event is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Nuclear-cytoplasmic interactions ; Mitochondrial genome ; Chondriome variability ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Although the mitochondrial genomes of the Chinese Spring and Aquila varieties of wheat are normaly similar in organization, this is not so in tissue cultures initiated from their immature embryos where the mitochondrial genomes of both are rearranged and in different, characteristic, ways. However, the mitochondrial genomes of tissue cultures of reciprocal F1 crosses between these varieties were almost identical to one another, showing that nuclear genes control the rearrangement processes. These rearrangements are either due to the appearance of new structures or else result from changes in the relative amounts of subgenomic components. The severe reduction in the amount of certain molecular configurations in tissue cultures from reciprocal crosses is probably due to the presence of dominant information in the Aquila nuclear genome. Data obtained from tissue cultures initiated from F2 embryos of the cross Aquila x Chinese Spring suggest that at least two complementary genes are involved in this control. In contrast, the presence of new molecular arrangements appears to be under the control of a dominant allelic form of a Chinese Spring gene or genes. Thus, this study demonstrates that at least two sets of nuclear genes control the reorganization of the mitochondrial genome which occurs when tissue cultures are initiated from the immature embryos of wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...