Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Tussock tundra ; Sphagnum ; Growth ; Tundra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In the foothills of the Philip Smith Mountains, Brooks Range, Alaska, tussock tundra occurs on rolling hills and in valleys that were shaped by Pleistocene glaciations. During the 1986 and 1987 summer seasons, Sphagnum growth and production were determined in “water tracks” on tundra slopes that acted to channel water flow to the valley bottom stream and in “intertrack tundra” areas that were relatively homogeneous with respect to downslope drainage. Measurements were made under ambient environmental conditions and on mosses receiving supplemental irrigation in each area. Growth rate for Sphagnum spp. (cm shoot length increase/day) was low and relatively constant in intertrack tundra and highest but quite variable in water tracks. A strong negative correlation was found between Sphagnum spp. growth rate and solar irradiance in the shady environment below Salix canopies in the water tracks. Estimates of net annual dry weight (DW) production for Sphagnum spp. ranged from 0.10 g DW dm-2 yr-1 in intertrack tundra vegetation to 1.64 g DW dm-2 yr-1 in well-shaded water tracks. Experimental water additions had little effect on growth and production in intertrack tundra and well-developed water tracks, but significantly increased growth in a weakly-developed water track community. Low production over large areas of tundra slopes may occur due to presence of slow growing species resistant to dessication in intertrack tundra as opposed to rapidly growing less compact species within the limited extent of water tracks. We hypothesize that species capable of rapid growth occur also in weakly-developed water tracks, and that these are water-limited more often than plants occurring in well-developed water track situations. Where experienced, high light intensity may additionally limit growth due to photoinhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Tundra ; Sphagnum ; Photosynthesis ; Water relations ; Microclimate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In tussock tundra areas of the foothills north of the Brooks Range, Alaska, up to two-thirds of annual precipitation may occur during intermittent summer thunderstorms. The seasonal pattern in capitulum water content of Sphagnum spp. depends on the frequency and duration of these precipitation events, on the microtopography of the habitat including depth of thaw, and on morphological characteristics of the individual species. The response of net photosynthesis to varying water content in Sphagnum squarrosum and S. angustifolium growing under willow canopies in a tussock tundra area near the Dalton Highway on the North Slope of Alaska was examined in the field. After a period in June required to develop photosynthetic capability, capitula water content was essentially optimal for photosynthesis in the range from 6 to 10 g H2O/g DW. Above this range, the rate of CO2 uptake was reduced, presumably due to limitations on CO2 diffusion to the photosynthetically active sites. At water contents below the optimum, net photosynthesis fell rapidly until reaching compensation at approximately 1 g H2O/g DW. Dependent on changes in weather conditions, average water content of Sphagnum samples collected in the field occasionally fell below 5 g H2O/g DW. During a particularly dry period, water content of individual Sphagnum hummocks fell below 1 g H2O/g DW, indicating that water stress does limit Sphagnum photosynthetic production in this habitat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Tundra ; Sphagnum ; Photosynthesis ; Irradiance ; Temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Photosynthetic characteristics of three species of Sphagnum common in the foothills of the Brooks Range on the North Slope of Alaska were investigated. Generally, light-saturated rates of net photosynthesis decreased in the order S. squarrosum, S. angustifolium, and S. warnstorfii when plants were grown under common growth chamber conditions. For field-grown S. angustifolium, average light compensation point at 10°C was 37 μmol m-2s-1 photosynthetic photon flux density (PPFD), and light saturation occurred between 250 and 500 μmol m-2 s-1. At 20°C, compensation point increased to 127 μmol m-2s-1 and the PPFD required for light saturation increased to approximately 500 μmol m-2s-1, while maximum rates of CO2 uptake increased only slightly. Light response curves of chamber-grown plants exhibited substantially lower compensation points and higher light-saturated rates of CO2 assimilation than field-grown material, due perhaps to a higher percentage of green, photosynthetically competent tissue. All three species exhibited broad responses to temperature, with optima near 20°C, and maintained at least 75% of maximum assimilation between approx. 13° and 30°C. Rates at 5°C were approx. 50% of maximum. Studies of the microclimate of Sphagnum at the field research site suggest that CO2 uptake should occur at near light-saturated rates during the day in open tussock tundra but that PPFD may often be limiting under Salix and Betula canopies in a water track drainage. Simulations using a simple model provided a seasonal estimate of 0.78 g dry weight (DW) of S. angustifolium produced from each initial g of photosynthetic tissue under willow canopies, assuming no water limitations. Although the simulation model suggests that production would be 66% higher in open tussock tundra, S. angustifolium is rarely found in this potentially more stressful habitat. To explain the relative abundance of Sphagnum in shaded water track areas as compared to open tussock tundra, we postulate that the vascular plant canopies provide protection from adverse effects of high temperatures, excess irradiance and reduced water availability. Under conditions of normal water availability, removal of the vascular plant cover did not affect the tissue water content of S. squarrosum, but resulted in a strong decrease in photosynthetic capacity, accompanied by chlorophyll bleaching. These results suggest that photoinhibition may limit production under certain conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...