Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1572-9125
    Schlagwort(e): 65F10 ; 65N30
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Mathematik
    Notizen: Abstract Standard Galerkin finite element methods or finite difference methods for singular perturbation problems lead to strongly unsymmetric matrices, which furthermore are in general notM-matrices. Accordingly, preconditioned iterative methods such as preconditioned (generalized) conjugate gradient methods, which have turned out to be very successful for symmetric and positive definite problems, can fail to converge or require an excessive number of iterations for singular perturbation problems. This is not so much due to the asymmetry, as it is to the fact that the spectrum can have both eigenvalues with positive and negative real parts, or eigenvalues with arbitrary small positive real parts and nonnegligible imaginary parts. This will be the case for a standard Galerkin method, unless the meshparameterh is chosen excessively small. There exist other discretization methods, however, for which the corresponding bilinear form is coercive, whence its finite element matrix has only eigenvalues with positive real parts; in fact, the real parts are positive uniformly in the singular perturbation parameter. In the present paper we examine the streamline diffusion finite element method in this respect. It is found that incomplete block-matrix factorization methods, both on classical form and on an inverse-free (vectorizable) form, coupled with a general least squares conjugate gradient method, can work exceptionally well on this type of problem. The number of iterations is sometimes significantly smaller than for the corresponding almost symmetric problem where the velocity field is close to zero or the singular perturbation parameter ε=1.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    BIT 29 (1989), S. 769-793 
    ISSN: 1572-9125
    Schlagwort(e): 65F10 ; 65N20 ; 65N30 ; two-level ; multilevel methods ; optimal preconditioners ; survey
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Mathematik
    Notizen: Abstract We survey multilevel iterative methods applied for solving large sparse systems with matrices, which depend on a level parameter, such as arise by the discretization of boundary value problems for partial differential equations when successive refinements of an initial discretization mesh is used to construct a sequence of nested difference or finite element meshes. We discuss various two-level (two-grid) preconditioning techniques, including some for nonsymmetric problems. The generalization of these techniques to the multilevel case is a nontrivial task. We emphasize several ways this can be done including classical multigrid methods and a recently proposed algebraic multilevel preconditioning method. Conditions for which the methods have an optimal order of computational complexity are presented.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Linear Algebra with Applications 1 (1994), S. 75-101 
    ISSN: 1070-5325
    Schlagwort(e): Variable-step preconditioners ; Nonlinear preconditioning ; Generalized conjugate gradient method ; Engineering ; Engineering General
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Mathematik
    Notizen: When solving large size systems of equations by preconditioned iterative solution methods, one normally uses a fixed preconditioner which may be defined by some eigenvalue information, such as in a Chebyshev iteration method. In many problems, however, it may be more effective to use variable preconditioners, in particular when the eigenvalue information is not available.In the present paper, a recursive way of constructing variable-step of, in general, nonlinear multilevel preconditioners for selfadjoint and coercive second-order elliptic problems, discretized by the finite element method is proposed. The preconditioner is constructed recursively from the coarsest to finer and finer levels. Each preconditioning step requires only block-diagonal solvers at all levels except at every k0, k0 ≥ 1 level where we perform a sufficient number ν, ν ≥ 1 of GCG-type variable-step iterations that involve the use again of a variable-step preconditioning for that level.It turns out that for any sufficiently large value of k0 and, asymptotically, for ν sufficiently large, but not too large, the method has both an optimal rate of convergence and an optimal order of computational complexity, both for two and three space dimensional problem domains.The method requires no parameter estimates and the convergence results do not depend on the regularity of the elliptic problem.
    Zusätzliches Material: 8 Tab.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...