Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 34 (1995), S. 147-159 
    ISSN: 1435-1528
    Keywords: Viscoelastic instability ; secondary flow visualization ; Taylor-Couette ; Boger fluids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract Flow visualization is performed on an elastically-dominated instability in several similar Boger fluids in Taylor-Couette flow. The onset and evolution of secondary flow are observed over a range of shear rates using reflective mica platelet seeding. Sequences of ambiently and sheet-illuminated images were digitally processed. Rotation of the inner cylinder was ramped from rest to its final value over a time on the order of a polymer relaxation time. Dilute solutions of high molecular weight polyisobutylene in oligomeric polybutene manifest a flow transition at a Deborah number, De s = λ s γ ≈ 1.5 with a Taylor number of 0.00022 in a cell with dimensionless gap ratio δ = 0.0963. At this transition, simple azimuthal shearing is replaced by steady, roughly square, axisymmetric counter-rotating vortices grossly similar to the well-known Taylor vortex flow that is observed at De s = 0, Ta = 3612. At De s = 3.75, Ta = 0.0014, an axisymmetric oscillatory secondary flow develops initially but is replaced by the steady vortices. At De s = 7.5, Ta = 0.0054, the oscillatory and vortex flow coexist and possess an irregular cellular cross-section. A wide span of growth rates is observed: the ratio of onset to polymer relaxation time ranges from 170000 at De s = 1.5 to O(10) at De s 〉 5. The role of inertia was explored through changing the solvent viscosity. A transition similar to the one that occurs at De s = 3.75, Ta = 0.0014, from the base azimuthal shearing flow to axisymmetric vortices, was also observed with a much lower viscosity fluid at De s = 3.3, Ta = 74.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...