Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1433-2965
    Keywords: Calcium ; Cardiac transplantation ; Fluoride ; Glucocorticoid-induced osteoporosis ; Parathyroid hormone ; Vitamin D
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Of 203 patients who underwent cardiac transplantation and were given long-term treatment with cyclosporine and 0.3 mg/kg per day prednisone, 123 were studied prospectively for at least 6 months and 46 for up to 2 years to evaluate the effects on lumbar bone mineral density (BMD) and calcium metabolism of a combined therapy with calcium, calcidiol and disodium monofluorophosphate (MFP). The population was arbitrarily assigned to one of two groups. Group I consisted of patients who had a lumbar spine BMDZ score above −1.5 SD as compared with an age-and sex-matched population and no vertebral fractures. They received daily 1 g elemental calcium and 25 µg (1000 IU) calcidiol. Group II consisted of patients who received daily the same doses of calcium and calcidiol combined with 200 mg MFP, and was divided into two subgroups: (a) osteopenic subjects who had a lumbar spine BMD Z score below −1.5 SD without vertebral fractures and (b) osteoporotic subjects with vertebral fractures. If serum creatinine was higher than 140 µmol/l the daily dose of MFP was tapered to 100 mg. Fifty-four and 27 patients from group I and 38 and 19 patients from group II were followed respectively for 12 and 24 months. In both groups serum parathyroid hormone levels were significantly reduced from the twelfth month in parallel with a significant increase in serum 25-OHD levels. No decline in lumbar BMD occurred in non-osteopenic and non-osteoporotic patients (group I) who received the calcium and calcidiol supplement. In group II, where MFP was added, a significant and linear increase in lumbar BMD was observed. The average increase reached 12.5% after 12 months and 29.5% after 24 months (p〈0.0001). The magnitude of the response was similar to the response previously reported in patients suffering from vertebral fractures due to postmenopausal osteoporosis and treated with the same daily dose of MFP. Because osteoporosis and fractures are not rare in patients after cardiac transplantation, these pilot results may be useful for further prevention and treatment trials of bone loss in this condition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1433-2965
    Keywords: Bone histomorphometry ; Calcium-47 ; Calcium absorption ; Osteoporosis ; Vitamin D
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Patients with vertebral osteoporosis have a wide range of bone loss rates, bone remodelling rates and capacities for gastrointestinal (GI) calcium absorption. To test the hypothesis that variations in GI absorptive capacity determine rates of bone loss or remodelling, we have sought relationships betwen calcium absorption or vitamin D metabolite levels on the one hand and rates of cancellous and cortical bone loss (measured by serial quantiative computed tomography in the radius;n=25) or indices of bone remodelling in tetracycline-prelabelled transiliac biopsies (n=41) on the other, in a sequential untreated group. Calcium absorption (net and true) was measured in 18-day balances and by a two-isotope deconvolution method (fractional absorption and maximum absorption rate, MAR). There was no significant seasonal effect on any of these four measures of calcium absorption (variance ratio,F=0.52–1.61,p〉0.1) or on 1,25-dihydroxyvitamin D levels (F=0.13,p〉0.1; range 11–69 pg/ml), notwithstanding the expected seasonal effect on 25-hydroxyvitamin D levels (mean 18.7 ng/ml, zenith mid July, semi-amplitude 7.5 ng/ml;F=6.82,p〈0.01). Neither this metabolite nor 1,25-dihydroxyvitamin D correlated with any index of calcium absorption (p〉0.1). No measure of calcium absorption (or intake) had a significant relationship with radial cortical or cancellous bone loss (p all 〉0.1) but cancellous bone loss was associated with the rate of endogenous calcium excretion (r=0.50,p〈0.05). A positive relationship between 25-hydroxyvitamin D and unlabelled osteoid surface (a marker of reduced blast vigour) persisted after adjustment for season (Student'st=2.70,p〈0.01) but did not reflect 1,25-dihydroxyvitamin D levels. This study did not address the question of whether reduced GI calcium absorption has a uniform effect on bone remodelling in osteoporosis. However, variations in capacity for calcium absorption are unlikely to be responsible for the heterogeneity in bone loss and remodelling rates seen in vertebral osteoporosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Osteoporosis international 4 (1994), S. S71 
    ISSN: 1433-2965
    Keywords: Calcium ; Hip fracture ; Osteoporosis ; Vitamin D
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The two main determinants of hip fractures are falls and bone loss leading to an intrinsic femoral fragility. Substantial femoral bone loss continues throughout old age, with a continuous and exponential increase in the risk of hip fracture; thus any reduction or arrest of this loss will induce an important reduction in the incidence of hip fracture. Preventive measures may be achieved during childhood by increasing peak bone mass with calcium and exercise, by using long-term estrogen replacement therapy after menopause, but also by using vitamin D and calcium supplements for late prevention in the elderly. Vitamin D insufficiency and a deficit in calcium intake are very common in the elderly living either in institutions or at home and the cumulative response to these deficits is a negative calcium balance which stimulates parathyroid hormone secretion. This senile secondary hyperparathyroidism is one of the determinants of femoral bone loss and can be reversed by calcium and vitamin D supplements. We have shown in a 3-year controlled prospective study that the daily use of supplements (1.2 g calcium and 800 IU vitamin D3) given in a large population of 3270 elderly ambulatory women living in nursing homes reduced the number of hip fractures by 23% (intention-to-treat analysis). In parallel, serum parathyroid hormone concentrations were reduced by 28% and low baseline serum 25-hydroxy vitamin D concentration returned to normal values. After 18 months of treatment the bone density of the total proximal femoral region had increased by 2.7% in the vitamin D3-calcium group and decreased by 4.6% in the placebo group (p〈0.001). This prevention is safe and can be recommended for people living in institutions. It could also be useful in other elderly subjects at particular risk due to a low calcium intake, an absence of solar exposure, a low femoral bone density, a high serum parathyroid hormone concentration, a low serum 25-hydroxyvitamin D concentration and a previous history of falls. Prospective studies are needed for further evaluation of these risk factors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...