Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Action potential ; Calcium channel effectors ; Channel kinetics ; Chara (K+ channel) ; Potassium channel ; Voltage clamp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The action of a wide range of drugs effective on Ca2+ channels in animal tissues has been measured on Ca2+ channels open during the action potential of the giant-celled green alga,Chara corallina. Of the organic effectors used, only the 1,4-dihydropyridines were found to inhibit reversibly Ca2+ influx, including, unexpectedly, Bay K 8644 and both isomers of 202–791. Methoxyverapamil (D-600), diltiazem, and the diphenylbutylpiperidines, fluspirilene and pimozide were found not to affect the Ca2+ influx. Conversely, bepridil greatly and irreversibly stimulated Ca2+ influx, and with time, stopped cytoplasmic streaming (which is sensitive to increases in cytoplasmic Ca2+). By apparently altering the cytoplasmic Ca2+ levels with various drugs, it was found that (with the exception of the inorganic cation, La3+) treatments likely to lead to an increase in cytoplasmic Ca2+ levels caused an increase in the rate of closure of the K+ channels. Similarly, treatments likely to lead to a decrease in cytoplasmic Ca2+ decreased the rate of K+ channel closure. The main effect of bepridil on the K+ channels was to increase the rate of voltage-dependent channel closure. The same effect was obtained upon increasing the external concentration of Ca2+, but it is likely that this was due to effects on the external face of the K+ channel. Addition of any of the 1,4-dihydropyridines had the opposite effect on the K+ channels, slowing the rate of channel closure. They sometimes also reduced K+ conductance, but this could well be a direct effect on the K+ channel; high concentrations (50 to 100 μM) of bepridil also reduced K+ conductance. No effect of photon irradiance or of abscisic acid could be consistently shown on the K+ channels. These results indicate a control of the gating of K+ channels by cytoplasmic Ca2+, with increased free Ca2+ levels leading to an increased rate of K+-channel closure. As well as inhibiting Ca2+ channels, it is suggested that La3+ acts on a Ca2+-binding site of the K+ channel, mimicking the effect of Ca2+ and increasing the rate of channel closure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 195 (1995), S. 478-488 
    ISSN: 1432-2048
    Keywords: Aluminium ; Calcium channel ; Planar lipid bilayer ; Plasma membrane ; Voltage clamp ; Triticum (Ca2+ channel)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new mechanism for calcium flux in wheat (Triticum aestivum L.) root cells has been characterized. Membrane vesicles were enriched in plasma membrane using aqueous-polymer two-phase partitioning and incorporated into artificial lipid bilayers, allowing characterization of single channels under voltage-clamp conditions. Membrane marker activities showed 74% and 83% purity in plasma membrane when expressed in terms of membrane area and activity, respectively. Since membrane vesicles obtained by aqueous-polymer two-phase partitioning yield a population of membrane vesicles of regular orientation, and vesicle fusion into planar lipid bilayers occurs in a defined manner, the orientation of the channel upon vesicle incorporation could be determined. Thus ionic activities and potentials could be controlled appropriately on what we propose to be the cytosolic (trans) and extracellular (cis) faces of the channel. The unitary conductance in symmetrical 1 mM CaCl2 was 27±0.4 (pS). The correlation between the theoretical and observed reversal potentials in asymmetrical conditions showed that the channel was highly selective for Ca2+ over Cl−. Experiments simulating physiological ionic conditions showed a PCa 2+/PK + of 17–26, decreasing in this range as the extracellular CaCl2 concentration increased from 0.1 to 1 mM. The channel was also permeable to the essential nutrient ions, Mg2+ and Mn2+. The open probability of the channel was strongly dependent on the membrane potential. Inactivation with time was observed at more negative membrane potentials, and was immediately reversed as soon as the membrane potential was decreased. At membrane potentials more negative than -130mV, the channel remained mainly in the closed state, suggesting that in vivo the channel would remain largely closed and would open only upon membrane depolarization. The channel was blocked by micromolar concentrations of extracellular verapamil and trivalent cations, Al3+ being the most effective of those tested. Exposure of the cytosolic and extracellular sides of the channel to inositol 1,4,5-trisphosphate had no effect on the channel activity. We suggest a plasma-membrane origin for the channel as shown by biochemical and electrophysiological evidence, and discuss possible physiological roles of this channel, both in Ca2+ uptake into roots and in signal transduction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...