Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 23 (1995), S. 536-547 
    ISSN: 0887-3585
    Keywords: water ; hydrophobicity ; hydration ; X-ray crystallography ; solvation ; ordered solvent ; molecular recognition ; water-protein interactions ; drug and inhibitor design ; protein surface analysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Water-protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen-bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively-charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side-chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U-75875 inhibitor complexes. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...