Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Adenylate kinase ; Aegialitis ; ATPase ; Lactuca ; Low-temperature stress (photosynthesis) ; Nonradiative energy dissipation ; Xanthophyll cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of temperature on the dark relaxation kinetics of nonradiative energy dissipation in photosystem II were compared in lettuce (Lactuca sativa L.) chloroplasts and leaves of Aegialitis annulata R. Br. After high levels of violaxanthin de-epoxidation in the light, Aegialitis leaves showed a marked delay in the dark relaxation of nonradiative dissipation, measured as non-photochemical quenching (NPQ) of photosystem II chlorophyll a fluorescence. Aegialitis leaves also maintained a moderately high adenylate energy charge at low temperatures during and after high-light exposure, presumably because of their limited carbon-fixation capacity. Similarly, dark-sustained NPQ could be induced in lettuce chloroplasts after de-epoxidizing violaxanthin and light-activating the ATP synthase. The duration and extent of dark-sustained NPQ were strongly enhanced by low temperatures in both chloroplasts and leaves. Further, the NPQ sustained at low temperatures was rapidly reversed upon warming. In lettuce chloroplasts, low temperatures sharply decreased the ATP-hydrolysis rate while increasing the duration and extent of the resultant trans-thylakoid proton gradient that elicits the NPQ. This was consistent with a higher degree of energy-coupling, presumably due to reduced proton diffusion through the thylakoid membrane at the lower temperatures. The chloroplast adenylate pool was in equilibrium with the adenylate kinase and therefore both ATP and ADP contributed to reverse coupling. The low-temperature-enhanced NPQ quenched the yields of the dark level (Fo) and the maximal (Fm) fluorescence proportionally in both chloroplasts and leaves. The extent of NPQ in the dark was inversely related to the efficiency of photosystem II, and very similar linear relationships were obtained over a wide temperature range in both chloroplasts and leaves. Likewise, the dark-sustained absorbance changes, caused by violaxanthin de-epoxidation (A508nm) and energy-dependent light scattering (A536nm) were strikingly similar in chloroplasts and leaves. Therefore, we conclude that the dark-sustained, low-temperature-stimulated NPQ in chloroplasts and leaves is apparently directly dependent on lumen acidification and chloroplastic ATP hydrolysis. In leaves, the ATP required for sustained NPQ is evidently provided by oxidative phosphorylation in the mitochondria. The functional significance of this quenching process and implications for measurements of photo-protection versus photodamage in leaves are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 192 (1994), S. 526-536 
    ISSN: 1432-2048
    Keywords: Adenylate energy charge ; Adenylate kinase equilibrium ; Aegialitis ; Gossypium ; Photosynthesis ; Stress (low temperature, low CO2) ; Xanthophyll cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of varying the steady-state rate of non-cyclic photosynthetic electron transport on the leaf adenylate energy charge and the epoxidation state of the xanthophyll-cycle pigments were determined in leaves of cotton (Gossypium hirsutum L.) and the mangrove (Aegialitis annulata R.Br.). Different photosynthetic rates were obtained by varying the intercellular CO2 concentration and/or the leaf temperature, and in some cases, by changing the leaf conductance to CO2 diffusion. Also determined were the effects of these treatments on the changes in the adenylate energy charge and the epoxidation state of the xanthophyll-cycle pigments that occur after darkening of the leaves. The leaf adenylate pool remained close to equilibrium with the adenylate kinase both in the light at steady state and during dark relaxation. The adenylate energy charge increased as the photosynthetic rate decreased and maximal levels were obtained when CO2 assimilation and, therefore, non-cyclic electron flow were maximally inhibited. This implies that, in nature, photophosphorylation may provide energy needed for ion-pumping and biosynthetic and repair processes, even under stress conditions that severely restrict or prevent photosynthetic gas exchange. High levels of de-epoxidized violaxanthin in the light did not necessarily indicate or depend on a high adenylate energy charge. Dithiothreitol, an inhibitor of the violaxanthin de-epoxidase a nd ascorbate peroxidase, did not inhibit the adenylate energy charge in the light. Thus we conclude that coupled electron transport during inhibited CO2 fixation was not driven by a dithiothreitol-sensitive Mehler ascorbate-peroxidase reaction. The changes in the adenylate energy charge and xanthophyll re-epoxidation that follow when leaves were darkened are strongly affected by the preceding photosynthetic rate. Postillumination fluctuations in adenylate energy charge, both at 15 ° and 27 °C, were most pronounced when the preceding photosynthetic rate was minimal and least pronounced when this rate was maximal. Temperature had a considerably greater influence in the dark on xanthophyll re-epoxidation than on the pattern of adenylate relaxation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...