Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 16 (1992), S. 263-268 
    ISSN: 1572-879X
    Keywords: Methane ; partial oxidation ; additive ; natural gas ; ZSM-5
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Previously, it was reported that the direct partial oxidation (DPO) of CH4 with O2 over HZSM-5 catalysts produces C5+ hydrocarbon liquids when the feed contains a propane or propene additive. This work studies additive effects on C5+ production in this system by processing a CH4/C3H8 feed with subsequent removal of the C3 additive and by processing natural gas feed. Results show C5+ production is maintained at constant yields for HZSM-5 catalysts having different zeolitic Al contents after removal of the C3 additive. Mechanistic implications are discussed. Natural gas DPO consistently produced C5+ liquids due to the presence of C2+ components in the feed. While C5+ yields from natural gas DPO are higher than those observed for CH4/C3 feeds, increasing feed O2 concentration, and thus conversion, deleteriously affected C5+ selectivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-879X
    Keywords: methane ; partial oxidation ; catalyst ; zinc ; ZSM-5
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Extended studies on Zn-ZSM-5 catalyst for the production of liquid hydrocarbons in the direct partial oxidation (DPO) of CH4 with O2 are reported. Previously, it was reported that metal-containing ZSM-5 catalysts could produce C5+ hydrocarbons from pure CH4/O2 feeds without feed additives. Zn-ZSM-5 produced the highest C5+ yields of the catalysts tested. This work shows that the method of introducing Zn onto the catalyst, ion-exchange versus impregnation, does not significantly alter C5+ yields if low Zn content is maintained (∼ 0.4–0.5 wt%). Liquid hydrocarbon yields in this system doubled after 8 h on stream while overall C2+ yields increased by over 300%. Mechanistic implications of these findings are discussed. Finally, processing a natural gas feed over Zn-ZSM-5 gave higher C5+ yields over CH4 feed but these yields were not improved over previously published results using HZSM-5.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...