Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Psychometrika 42 (1977), S. 461-489 
    ISSN: 1860-0980
    Keywords: Thurstonian scaling model ; discriminal process ; neural schema for auditory psychophysics ; attention bands ; attention as sampling ; absolute identification ; magnitude estimation ; frequency discrimination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Psychology
    Notes: Abstract Four issues are discussed concerning Thurstone's discriminal processes: the distributions governing the representation, the nature of the response decision rules, the relation of the mean representation to physical characteristics of the stimulus, and factors affecting the variance of the representation. A neural schema underlying the representation is proposed which involves samples in time of pulse trains on individual neural fibers, estimators of parameters of the several pulse trains, samples of neural fibers, and an aggregation of the estimates over the sample. The resulting aggregated estimate is the Thurstonian representation. Two estimators of pulse rate, which is monotonic with signal intensity, are timing and counting ratios and two methods of aggregation are averaging and maximizing. These lead to very different predictions in a speed-accuracy experiment; data indicate that both estimators are available and the aggregation is by averaging. Magnitude estimation data are then used both to illustrate an unusual response rule and to study the psychophysical law. In addition, the pattern of variability and correlation of magnitude estimates on successive trials is interpreted in terms of the sample size over which the aggregation takes place. Neural sample size is equated with selective attention, and is an important factor affecting the variability of the representation. It accounts for the magical number seven phenomenon in absolute identification and predicts the impact of nonuniform distributions of intensities on the absolute identification of two frequencies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...