Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 17 (1993), S. 1-10 
    ISSN: 0887-3585
    Schlagwort(e): docking ; active site ; aconitase ; structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: Automated docking of substrates to proteins of known structure aids the process of crystallographic analysis in two ways. First, automated docking can be used to generate a small number of starting models for substrates using only protein coordinates from an early stage of refinement. Second, automated docking provides a method for exploring aspects of catalysis that are inaccessible to crystallography by postulating binding modes of catalytic intermediates. This paper describes the use of automated docking to explore the binding of substrates to aconitase. The technique starts with a substrate molecule in an arbitrary configuration and position and finds favorable docked configrations in a (static) protein active site based on a molecular mechanics type force field. Using protein coordinates from an early stage of refinement of an aconitase-isocitrate complex, we successfully predicted the binding configuration of isocitrate. Four configurations were found, the energetically most favorable of which fit the observed electron density well and was used as a starting model for further refinement. Two configurations were found in citrate docking experiments, the second of which approximates the mode of substrate binding in an aconitasenitrocitrate complex. We were also able to propose two binding modes of the catalytic intermediate cis-aconitate. These correspond closely to the isocitrate and the citrate binding modes. The relation of these new results to the proposed reaction mechanism is discussed. © 1993 Wiley-Liss, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 25 (1996), S. 379-388 
    ISSN: 0887-3585
    Schlagwort(e): protein modeling ; lattice approximation error ; adjusting of energy functions ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: Lattice models of proteins can approximate off-lattice structures to arbitrary precision with RMS (root mean squared) deviations roughly equal to half the lattice spacing (Rykunov et al., Proteins 22:100-109, 1995; Reva et al., J. Comp. Biol., 1996). However, even small distortions in the positions of chain links lead to significant errors in lattice-based energy calculations (Reva et al., J. Comp. Chem., 1996). These errors arise mainly from rigid interactions (such as steric repulsion) which change their energies considerably at a range which is much smaller than the usual accuracy of lattice modeling (〉1.0 Å). To reduce this error, we suggest a procedure of adjusting energy functions to a given lattice. The general approach is illustrated with energy calculations based on pairwise potentials by Kolinski et al. (J. Chem. Phys. 98:1-14, 1993). At all the lattice spacings, from 0.5-3.8 Å, the lattice-adjusted potentials improve the accuracy of lattice-based energy calculations and Increase the correlations between off-lattice and lattice energies. © 1996 Wiley-Liss, Inc.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...