Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 61-79 
    ISSN: 0271-2091
    Keywords: finite element ; shallow water equations ; adaptive refinement ; convergence ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A p-type finite element scheme is introduced for the three-dimensional shallow water equations with a harmonic expansion in time. The wave continuity equation formulation is used which decouples the problem into a Helmholtz equation for surface elevation and a momentum equation for horizontal velocity. An exploration of the applicability of p methods to this form of the shallow water problem is presented, with a consideration of the problem of continuity errors. The convergence rates and relative computational efficiency between h- and p- type methods are compared with the use of three test cases representing various degrees of difficulty. A channel test case establishes convergence rates, a continental shelf test case examines a problem with accuracy difficulties at the shelf break, and a field-scale test case examines problems with highly irregular grids. For the irregular grids, adaptive h combined with uniform p refinement was necessary to retain high convergence rates. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...