Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Type 1 (insulin-dependent) diabetes mellitus  (1)
  • adipose tissue blood flow.  (1)
Materialart
Erscheinungszeitraum
  • 1
    ISSN: 1432-0428
    Schlagwort(e): Keywords Microdialysis ; glycerol ; non-esterified fatty acids ; adrenoceptors ; adipose tissue blood flow.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The adrenergic regulation of adipose tissue lipolysis in response to insulin-induced hypoglycaemia (intravenous infusion of soluble insulin 0.10 IU · kg body weight−1· h−1 until the arterial plasma glucose fell below 2.8 mmol/l) was investigated directly in vivo in 11 insulin-dependent diabetic (IDDM) patients and 12 control subjects, using microdialysis of the extracellular space of abdominal subcutaneous adipose tissue. The tissue glycerol level (lipolysis index) and the escape of ethanol from the perfusion medium (blood flow index) were continuously monitored. During insulin infusion the arterial glucose level was reduced in parallel and the hypoglycaemic nadir was almost identical in the two groups (diabetic patients 2.2 ± 0.1 and control subjects 2.3 ± 0.1 mmol/l). While the maximum response of plasma epinephrine to hypoglycaemia was 30 % lower in diabetic patients than in the control subjects (p 〈 0.05), the glycerol levels in adipose tissue and in plasma, as well as in serum non-esterified fatty acids, increased twice as much in the former as in the latter group following hypoglycaemia (p 〈 0.01). Addition of the beta-adrenoceptor blocker propranolol (10−4 mol/l) to the tissue perfusate almost completely prevented the hypoglycaemia-induced increase in the adipose tissue glycerol level in both groups, whereas in situ perfusion with 10−4 mol/l of the alpha-adrenoceptor blocker phentolamine resulted in an additional increase in the tissue glycerol levels; during alpha-blockade, the glycerol response to hypoglycaemia remained enhanced by threefold in the diabetic patients (p 〈 0.01). In both groups local adipose tissue blood flow increased transiently in a similar way after hypoglycaemia; the increase being inhibited by in situ beta-adrenoceptor blockade. We conclude that both alpha- and beta-adrenergic mechanisms regulate adipose tissue lipolysis in response to hypoglycaemia. In IDDM, lipolysis is markedly enhanced following hypoglycaemia, despite a reduced catecholamine secretory response, because of increased beta-adrenoceptor action in adipose tissue. [Diabetologia (1996) 39: 845–853]
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0428
    Schlagwort(e): Glucose utilization ; Type 1 (insulin-dependent) diabetes mellitus ; human C-peptide ; glucagon ; renal uptake ; hepatic uptake
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Biosynthetic human C-peptide or NaCl (154 mmol·l−1) was given intravenously to 13 Type 1 (insulin-dependent) diabetic patients to determine the renal and splanchnic exchange of C-peptide. Catheters were inserted percutaneously into an artery and a renal and hepatic vein. Infusions of C-peptide were given for 60 min at two dose levels (5 and 30 pmol·kg−1·min−1). Insulin was infused throughout the study (0.5 mU·kg−1·min−1) and plasma glucose was kept constant by a variable glucose infusion. The regional blood flows were measured by indicator dilution techniques. In 11 of the 13 patients basal C-peptide levels were not detectable. The arterial steady-state C-peptide concentration was 0.81±0.10 nmol·l−1 and 2.33±0.30 nmol·l−1 at the low and high rate infusions, respectively. Renal uptake was 124±18 pmol·min−1 at the low infusion corresponding to 39% of the infused amount. At the higher dose C-peptide infusion renal uptake increased to 155±21 pmol·min−1 (p〈0.05). Urinary excretion of C-peptide was 7±2 pmol·min−1 at the low dose infusion and increased to 34±6 pmol·min−1 at the high dose infusion (p〈0.01). The proportions of infused amount excreted were fairly constant and between 2% and 3%. No net exchange of C-peptide was found across the splanchnic vascular bed. The rate of glucose infusion had to be increased by 35% during the low dose C-peptide, but not during NaCl infusion in order to maintain a constant plasma glucose concentration. Arterial plasma concentrations of noradrenaline increased by 15–25% during both C-peptide and NaCl infusions. It is concluded that in patients with Type 1 diabetes (a) the kidney is the primary site of C-peptide removal, (b) renal metabolism rather than urinary excretion is the dominating process for C-peptide elimination (c) the excreted proportions of an infused amount of C-peptide were fairly constant between 2% and 3% and (d) no hepatic C-peptide catabolism could be detected.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...