Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • F2 clonal population  (1)
  • alkaline phosphatase  (1)
  • 1
    ISSN: 1432-2242
    Keywords: Key words Rice ; Sheath blight ; F2 clonal population ; QTLs for resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Rice sheath blight, caused by Rhizoctonia solani Kühn, is one of the three major diseases of rice. The present study was conducted with an F2 clonal population of Jasmine 85/Lemont. The F2 population, including 128 clonal families, was inoculated by short toothpicks incubated with a strain, RH-9 of the fungus. Based on field disease evaluations in 2 years and a genetic map with 118 evenly distributed molecular markers, we identified six quantitative trait loci (QTLs) contributing to sheath blight resistance. These QTLs, qSB-2, qSB-3, qSB-7, qSB-9-1, qSB-9-2 and qSB-11, were located on chromosomes 2, 3, 7, 9 and 11, respectively. The respective alleles of qSB-2, qSB-3, qSB-7, and qSB-9-2 from Jasmine 85 could explain 21.2%, 26.5%, 22.2% and 10.1% of the total phenotypic variation, respectively; while the alleles of qSB-9-1 and qSB-11 from Lemont could explain 9.8% and 31.2% of the total phenotypic variation. Of these qSB-2 and qSB-11 could be detected in both years, while remaining loci were detected only in a single year. Furthermore, four QTLs (qHD-2, qHD-3, qHD-5 and qHD-7) controlling heading date and three QTLs (qPH-3, qPH-4 and qPH-11) controlling plant height were also identified. Though rice sheath blight resistance may be influenced by morphological traits, such as heading date and plant height, in the present study most detected resistance loci were not linked to the loci for heading date or plant height.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1608-3040
    Keywords: alkaline phosphatase ; oxodiperoxovanadate ; inhibition ; inactivation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme that catalyzes the nonspecific hydrolysis of phosphate monoesters. The effects of some pollutants in seawater on the activity of the enzyme will result in the loss of the biological function of the enzyme, which will affect the exuviating crab shell and threaten the survival of the animal. In the present paper, the effects of four oxodiperoxovanadate (V) complexes on the activity of green crab alkaline phosphatase have been studied. The results show that these vanadate derivatives can lead to reversible inactivation. The equilibrium constants for binding of inhibitors with the enzyme and/or the enzyme–substrate complexes have been determined. The results show that sodium (2,2'-bipyridine)oxodiperoxovanadate, pV(bipy), and potassium oxodiperoxo-(1,10-phenanthroline)vanadate, pV(phen), are competitive inhibitors, while potassium picolinato-oxodiperoxo-vanadate, pV(pic), and oxalato-oxodiperoxovanadate, pV(ox), are mixed-type inhibitors. These results suggest that pV(bipy) is a considerably more potent competitive inhibitor than pV(phen) and that the competitive inhibition effect of pV(pic) is stronger than that of pV(ox), but the non-competitive inhibition effect of pV(ox) is stronger than that of pV(pic).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...