Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 42-53 
    ISSN: 0006-3592
    Keywords: oxygen uptake rate ; animal cell cultivation ; dissolved oxygen and pH ; state space controller ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To monitor gas reaction rates in animal cell culture at constant dissolved oxygen concentration (DO) and constant pH it was necessary to develop improved control methods. Decoupling of both controllrs was obtained by manipulation of molar fractions of oxygen and carbon dioxide in the gas phase. Two pairs of DO and pH controllers were designed and tested both in simulation and exprimental runs. The first controller pair was developed for headspace aeration only, whereas the second controller pair was designed for bubble aeration using a microsparger and flushing the headspace with helium. pH was controlled by a conventional discrete PID controller in its velocity form. For DO control two linear state space feedback controllers with parameter adaptation were established. In these controllers the oxygen uptake rate (OUR) was considered as a disturbance and was not included in the mathematical model. The feedback gain adaptation was based on the difference between the actual molar fraction of oxygen at time step n and the initial molar fraction. This difference is related to OUR and was used to increase or decrease the state feedback controller gain (k and k1, respectively) in a slow manner. With these controllers it was possible to get an excellent online estimate of OUR. In the case of bubble aeration a simple gas phase mass balance was sufficient, whereas during the headspace aeration a liquid phase balance was required. It has been shown that determination of OUR using gas balance requires a significantly better controller performance compared to just keeping DO and pH within reasonable limits. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 54-62 
    ISSN: 0006-3592
    Keywords: oxygen uptake rate ; animal cell cultivation ; hybridoma ; monoclonal antibody ; glutamine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Different methods for oxygen uptake rate (OUR) determinations in animal cell cultivation were investigated using a high quality mass spectrometer. Dynamic measurements have considerable disadvantages because of disturbances of the growing cells by the necessary variations of dissolved oxygen concentration. Only infrequent discrete measurements are possible using this method. Stationary liquid phase balance yielded better results with much higher frequency. Gas phase balancing has the advantage of not requiring dissolved oxygen measurement and knowledge of KLa, both of them are easily biased. It was found that simple gas phase balancing is either very inaccurate (error larger than expected signal) or very slow, with gas phase residence times of several hours. Therefore, a new method of aeration was designed. Oxygen and CO2 transfer are mainly achieved via sparging. The gas released to the headspace is diluted with a roughly 100-fold stream of an inert gas (helium). Through this dilution, gas ratios are not changed for O2, CO2, Ar, and N2. The measurement of lower concentrations (parts per million and below) is easy using mass spectrometry with a secondary electron multiplier. With this new method an excellent accuracy and sufficient speed of analysis were obtained. All these on-line methods for OUR measurement were tested during the cultivation of animal cells. The new method allowed better study of the kinetics of animal cell cultures as was shown with a hybridoma cell line (HFN 7.1, ATCC CRL 1606) producing monoclonal antibodies against human fibronectin. With the aid of these methods it was possible to find a correlation between a rapid decrease in oxygen uptake rate (OUR) and glutamine concentration. The sudden decrease in OUR can be attributed to glutamine depletion. This provided a basis for the controlled addition of glutamine to reduce the formation of ammonia produced by hydrolysis. This control method based on OUR measurement resulted in increased cell concentration and threefold higher product concentration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...