Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-0428
    Schlagwort(e): Keywords Diabetes mellitus ; alloxan ; atropine ; cholinergic ; mouse ; insulin secretion ; insulin gene expression ; immunocytochemistry.
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The diabetogenic action of the beta-cell toxin, alloxan, is transient when administered to mice at a dosage of 50 mg/kg. We examined whether increased cholinergic activity is involved in the compensatory mechanisms. Therefore, following administration of alloxan, methyl atropine (32 μmol/kg) was given intraperitoneally once daily for 5 consecutive days. Methyl atropine worsened the degree of hyperglycaemia during the first week after alloxan administration. Recovery from the diabetes mellitus was observed in a substantial number of animals given alloxan without methyl atropine, whereas the risk of developing manifest diabetes was markedly enhanced by methyl atropine. At 35 days after alloxan administration, 33 % of the animals, which were given alloxan alone and were diabetic after 4 days, still had diabetes. In contrast, of the animals rendered diabetic by alloxan with concomitant atropinization, 92 % remained diabetic throughout the study (p = 0.0145 vs alloxan alone). Glucose-stimulated insulin secretion and pancreatic insulin content were markedly reduced in animals with diabetes while being less reduced in alloxan-injected animals without diabetes. Moreover, in situ hybridization and immunocytochemistry revealed markedly decreased levels of insulin mRNA and number of insulin cells in alloxan-treated animals. With regard to insulin secretion, pancreatic insulin content, insulin mRNA and insulin cell number, the reduction was the same irrespective of whether methyl atropine had been given. Thus, 5 days of atropinization increases the incidence of diabetes following alloxan at 50 mg/kg in mice. We suggest that cholinergic activity protects insulin cells from glucotoxicity during the first week after alloxan administration and therefore, reduces the frequency of diabetes. [Diabetologia (1996) 39: 383–390]
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0428
    Schlagwort(e): Diabetes mellitus ; alloxan ; atropine ; cholinergic ; mouse ; insulin secretion ; insulin gene expression ; immunocytochemistry
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The diabetogenic action of the beta-cell toxin, alloxan, is transient when administered to mice at a dosage of 50 mg/kg. We examined whether increased cholinergic activity is involved in the compensatory mechanisms. Therefore, following administration of alloxan, methyl atropine (32 Μmol/kg) was given intraperitoneally once daily for 5 consecutive days. Methyl atropine worsened the degree of hyperglycaemia during the first week after alloxan administration. Recovery from the diabetes mellitus was observed in a substantial number of animals given alloxan without methyl atropine, whereas the risk of developing manifest diabetes was markedly enhanced by methyl atropine. At 35 days after alloxan administration, 33% of the animals, which were given alloxan alone and were diabetic after 4 days, still had diabetes. In contrast, of the animals rendered diabetic by alloxan with concomitant atropinization, 92% remained diabetic throughout the study (p=0.0145 vs alloxan alone). Glucose-stimulated insulin secretion and pancreatic insulin content were markedly reduced in animals with diabetes while being less reduced in alloxan-injected animals without diabetes. Moreover, in situ hybridization and immunocytochemistry revealed markedly decreased levels of insulin mRNA and number of insulin cells in alloxan-treated animals. With regard to insulin secretion, pancreatic insulin content, insulin mRNA and insulin cell number, the reduction was the same irrespective of whether methyl atropine had been given. Thus, 5 days of atropinization increases the incidence of diabetes following alloxan at 50 mg/kg in mice. We suggest that cholinergic activity protects insulin cells from glucotoxicity during the first week after alloxan administration and therefore, reduces the frequency of diabetes.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...