Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 12 (1996), S. 197-208 
    ISSN: 1069-8299
    Keywords: curved surface ; triangular mesh ; automatic generation ; Bézier patches ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: The paper deals with the discretization of any given multi-connected curved surface into triangular elements with straight sides. The method evolves from an initial rough triangular mesh generated from a set of input points which describe the geometry of the problem domain. Interior nodes are distributed according to user-established node-spacing functions of pre-specified spacing control parameters, and they are linked using the advancing front technique. Particular attention is paid to obtaining good distribution of interior nodes in the vicinity of the domain limits. Surface geometry representation is established using triangular Bézier patches with G1 continuity. This approach ensures a geometrically well-defined working platform for the subsequent discretization of the problem domain. The proposed method requires minimum input from the user and allows mesh gradation and remeshing to be carried out in a straightforward manner. Furthermore, problems associated with variations in the domain geometry as a result of local remeshing are eliminated with the aid of the geometrically pre-defined discretization platform. Results are presented for a range of both curved and planar surfaces, typical of those which might be encountered in hydrodynamics modelling involving flows with a free surface. The presented results demonstrate the flexibility and power of the technique.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...