Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0197-8462
    Keywords: baboon (Papio cynocephalus) ; cannula ; electric field ; magnetic field ; pineal gland ; radioimmunoassay ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Experiments conducted with laboratory rodents indicate that exposure to 60 Hz electric fields or magnetic fields can suppress nocturnal melatonin concentrations in pineal gland and blood. In three experiments employing three field-exposed and three sham-exposed nonhuman primates, each implanted with an indwelling venous cannula to allow repeated blood sampling, we studied the effects of either 6 kV/m and 50 μT (0.5 G) or 30 kV/m and 100 μT (1.0 G) on serum melatonin patterns. The fields were ramped on and off slowly, so that no transients occurred. Extensive quality control for the melatonin assay, computerized control and monitoring of field intensities, and consistent exposure protocols were used. No changes in nocturnal serum melatonin concentration resulted from 6 weeks of day-time exposure with slow field onset/offset and a highly regular exposure protocol. These results indicate that, under the conditions tested, day-time exposure to 60 Hz electric and magnetic fields in combination does not result in melatonin suppression in primates. © 1995 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0197-8462
    Keywords: baboon (Papio cynocephalus) ; intermittent ; irregular ; pineal gland ; transient ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Experiments with rodents indicate that power-frequency electric field (EF) or magnetic field (MF) exposure can suppress the normal nocturnal increase in melatonin concentration in pineal gland and blood. In a separate set of three experiments conducted with nonhuman primates, we did not observe melatonin suppression as a result of 6 weeks of day-time exposure to combined 60 Hz electric and magnetic fields (E/MF) with regularly scheduled “slow” E/MF onsets/offsets. The study described here used a different exposure paradigm in which two baboons were exposed to E/MF with “rapid” E/MF onsets/offsets accompanied by EF transients not found with slowly ramped E/MF onset/offset; profound reductions in nocturnal serum melatonin concentration were observed in this experiment. If replicated in a more extensive experiment, the observation of melatonin suppression only in the presence of E/MF transients would suggest that very specific exposure parameters determine the effects of 60 Hz E/MF on melatonin. © 1995 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...