Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8757
    Keywords: binary adsorption ; micropores ; nanopores ; molecular simulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Monte Carlo and molecular dynamics simulations are performed to study fluid adsorption of a two component fluid in slit pores of nanoscopic dimensions. The slit pores are immersed in a binary fluid bath, which is comprised of spherical molecules having a size ratio of 1.43, at constant temperature and composition. Pore width is varied to determine how the heat capacity and self-diffusion coefficient are linked to the composition and structure of the adsorbed fluid. In pores where the fluid structure is most pronounced, we observe: perfect (or near perfect) exclusion of one component by the other component, a heat capacity that rapidly oscillates and is of greater magnitude than in the fluid bath, and self-diffusion coefficients on the order of 10−8 cm2/s. The behavior of the heat capacity and diffusion coefficients appears to arise from a near solid-like layering of OMCTS that occurs at certain favorable pore widths.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...