Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Bovidae  (2)
  • biochemical genetics  (1)
  • 1
    ISSN: 1573-4927
    Schlagwort(e): esterase-10 ; formamidase-5 ; gene mapping ; brain enzyme ; biochemical genetics ; heat inactivation ; centrifugal fast analyzer
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract A single formamidase, which is different from the formamidases found in other tissues, occurs in the brains of mice. This enzyme is here called formamidase-5 and the gene symbol is designated For-5. Two alleles are recognized on the basis of their differential heat sensitivity: For-5 b is relatively heat stable and is present in strain C57BL/6J, while For-5 d is relatively heat sensitive and is present in strain DBA/2J. The heat sensitivity of formamidase-5 in 44 other inbred strains and substrains was tested and found to resemble that of C57BL/6J or DBA/2J. Thirty-six recombinant inbred strains derived from progenitors that differed at For-5 were studied to test for single-gene inheritance and linkage with other loci. Complete concordance was found with the esterase-10 locus (Es-10), indicating close linkage. The 99% upper confidence limit of the distance between For-5 and Es-10 is 3.7 centimorgans (cM). Es-10 is located on chromosome 14 about 19 cM from the centromere. An independent demonstration of linkage of For-5 with Es-10 and another chromosome 14 marker, hairless (hr), is provided by the finding that the HRS/J strain, which has been sibmated for 60 generations with forced heterozygosity at the hr locus, is cosegregating at For-5 and Es-10. A survey of 32 inbred strains and substrains revealed that the For-5 d allele is associated with the Es-10 b allele, and that the For-5 b allele is associated with Es-10 a and Es-10 c. Formamidase-5 segregates as expected in the F2 generation of crosses between strains bearing For-5 b and For-5 d alleles. It is possible that this unique formamidase of the brain is involved in the metabolism of a neurotransmitter substance.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-6849
    Schlagwort(e): Artiodactyla ; Bovidae ; comparative cyto-genetics ; karyotype ; molecular cytogenetics ; nilgai
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract A combination of chromosomal banding and fluorescence in situ hybridization (FISH) was used to characterize the karyotype of Boselaphus tragocamelus (nilgai) relative to the domestic cattle standard karyotype. G-, Q- and C-band karyotypes of nilgai are presented, and the chromosomal complement of nilgai is determined to be 2n = 46 (female FN = 60, male FN = 59; NAA = 56), consistent with previous reports for the species. Comparisons with cattle identified extensive monobrachial homologies with some noteworthy exceptions. Chromosome 25 is centrically fused to 24, and chromosome 16 is acrocentric. Both appear to have additional pericentromeric material not seen in the equivalent cattle acrocentrics. This pericentromeric chromatin may be the result of de novo additions or translocation of pericentromeric material from chromosome 6, which is shown to be centrically fused to 13 but is only about two-thirds the length of cattle 6. Comparisons with cattle demonstrated that nilgai chromosome 17 has undergone a paracentric inversion and that chromosome 20 has two blocks of interstitial constitutive heterochromatin. The identities of both chromosomes were confirmed by chromosomal FISH. Furthermore, chromosomal banding and FISH were used to determine that autosome 14 has been fused to the ancestral X and Y of nilgai to form compound neo-X and -Y chromosomes. Additional FISH analyses were conducted to confirm other proposed chromosome homologies and to identify nucleolar organizing regions within the nilgai complement.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1573-6849
    Schlagwort(e): Bovidae ; comparative cytogenetics ; molecular cytogenetics ; ruminants ; sex chromosomes
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Q-band comparisons were made among representative species of the four genera of the tribe Bovini (Bos, Bison, Bubalus, Syncerus) as well as to selected outgroup taxa representing the remaining two tribes of the subfamily Bovinae (nilgai, Boselaphini; eland, Tragelphini), the Bovidae subfamily Caprinae (domestic sheep) and the family Cervidae (sika deer and white- tailed deer). Extensive autosomal arm homologies were noted, but relatively few derivative character states were shared. Focus was then made on variation of the sex chromosomes and the chromosomal distribution of nucleolar organizer regions (NORs). Bovine BAC clones were used in molecular cytogenetic analyses to decipher rearrangements of the sex chromosomes, and a pocket gopher 28s ribosomal probe was used to map the chromosomal locations of nucleolar organizing regions (NORs). Some of the more noteworthy conclusions drawn from the comparative analysis were that: 1. The Bovidae ancestral X chromosome was probably acrocentric and similar to acrocentric X chromosomes of the Bovinae; 2. The domestic sheep acrocentric X is probably a deriative character state that unites non-Bovinae subfamilies; 3. Bos and Bison are united within the tribe Bovini by the presence of shared derivative submetacentric X chromosomes; 4. Sika and white- tailed deer X chromosomes differ by inversion from X chromosomes of the Bovinae; 5. The Bovini ancestral Y chromosome was probably a small acrocentric; 6. Bos taurus, B. gaurus and B. banteng share derivative metacentric Y chromosomes; 7. Syncerus and Bubalus are united by the acquisition of X-specific repetitive DNA sequence on their Y chromosomes; 8. Bovinae and Cervidae X chromosome centromere position varies without concomitant change in locus order. Preliminary data indicate that a knowledge of the chromosomal distribution of NORs among the Bovidae will prove to be phylogenetically informative.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...