Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4846
    Keywords: spray pyrolysis ; apatite ; composite particle ; biomimetic deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Apatite derived by sol-gel routes through an amorphous state or derived biomimetically is likely to provide chemically and biologically active surfaces. Thus apatite or apatite-composite particles were prepared by spray-pyrolysis of several solutions as they were applicable to medical treatment. Calcium lactate and ammonium dihydrogen phosphate aqueous solutions stabilized with ethylenediaminetetraacetic acid were sprayed ultrasonically and pyrolysed at 600°C to yield amorphous particles of apatite while apatite-ferric oxide composite powders were prepared from the solutions of calcium lactate and ferric nitrate. Solutions of calcium nitrate and titanium ethoxide in 0.5 N HNO3 were also spray-pyrolysed at 600°C to prepare calcium titanate and titanium oxide particles trapped on a Ti substrate. Apatite could biomimetically be developed on the calcium titanate particles when they were soaked in an acellular simulated body fluid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4846
    Keywords: spray pyrolysis ; apatite ; composite particle ; biomimetic deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Apatite derived by sol-gel routes through an amorphous state or derived biomimetically is likely to provide chemically and biologically active surfaces. Thus apatite or apatite-composite particles were prepared by spray-pyrolysis of several solutions as they were applicable to medical treatment. Calcium lactate and ammonium dihydrogen phosphate aqueous solutions stabilized with ethylenediaminetetraacetic acid were sprayed ultrasonically and pyrolysed at 600°C to yield amorphous particles of apatite while apatite-ferric oxide composite powders were prepared from the solutions of calcium lactate and ferric nitrate. Solutions of calcium nitrate and titanium ethoxide in 0.5 N HNO3 were also spray-pyrolysed at 600°C to prepare calcium titanate and titanium oxide particles trapped on a Ti substrate. Apatite could biomimetically be developed on the calcium titanate particles when they were soaked in an acellular simulated body fluid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...