Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 543-555 
    ISSN: 0197-8462
    Keywords: broadband irradiation ; short pulses ; tissue dispersion ; induced currents ; SARs ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The finite-difference time-domain (FDTD) method has been used to calculate SARs and induced currents involving whole-body or partial-body exposures of models to spatially uniform or nonuniform (far-field or near-field), to sinusoidally varying EM fields, or to transient fields such as those associated with electromagnetic pulses. However, a weakness of the FDTD algorithm is that the dispersion of the tissue's dielectric properties is ignored and frequency-independent properties are assumed. Although this is permissible for continuous-wave or narrow-band irradiation, the results may be highly erroneous for short pulses, in which ultra-wide bandwidths are involved. In some recent publications, procedures are described for one- and two-dimensional problems for media in which the complex permittivity ∊ * (ω) may be described by a single-order Debye relaxation equation or a modified version thereof. These procedures based on a convolution integral describing D(t) in terms of E(t) cannot be extended to human tissues for which multiterm Debye relaxation equations must generally be used.We describe here a new differential-equation approach that can be used for general dispersive media. We illustrate the use of this approach by one- and three-dimensional examples of media for which ∊ * (ω) is given by a multiterm Debye equation, and for an approximate two-thirds muscle-equivalent model of the human body. Based on a single run involving a Gaussian pulse, the frequency-dependent FDTD [(FD)2TD] method allows calculations of SARs and induced currents at various frequencies by taking the Fourier components of the induced E fields. The (FD)2TD method can also be used to calculate coupling of the short (ultra-wideband) pulses to the human body. 1992 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...