Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 16 (1995), S. 801-810 
    ISSN: 1572-9567
    Keywords: alternative refrigerants ; binary mixtures ; bubble-point pressure ; saturated-liquid density ; vapor-liquid equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Bubble-point pressures and saturated-liquid densities of the binary R-135 (pentafuoroethane) + R- 143a ( 1, 1, 1-trifluoroethane) system have been measured for several compositions at temperatures from 280 to 330 K by means of a magnetic densimeter coupled with a variable-volume cell mounted with a metallic bellows. The experimental uncertainties of the temperature, pressure. and density measurements and the composition determination were estimated to be within ±15 mK, ±13 k Pa, ±0.2%, and ±0.1 wt%, respectively. The purities of the samples used throughout the measurements are 99.98 wt% for R-125 and 99.0 mol % for R- 143a. Based on the present data, the thermodynamic behavior of the vapor-liquid equilibria of this binary refrigerant mixture has been evaluated by using the Peng-Robinson equation for the bubble-point pressures, and the modified Hankinson-Brobst-Thomson equation for the saturated-liquid densities. This was done to identify the optimized binary interaction parameters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 12 (1991), S. 1029-1038 
    ISSN: 1572-9567
    Keywords: bubble-point pressure ; HCFC 142b (CH3 CClF2) ; HFC 152a (CH3 CHF2) ; mixtures ; refrigerants ; saturated liquid density
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Forty-eight sets of the saturated liquid densities and bubble-point pressures of the binary HFC 152a + HCFC 142b system were measured with a magnetic densimeter coupled with a variable-volume cell. The measurements obtained at four compositions, 20, 40, 60, and 80 wt%, of HFC 152a cover a range of temperatures from 280 to 400 K. The experimental uncertainties in temperature, pressure, density, and composition were estimated to be within ±15mK, ±20kPa, ±0.2%, and between −0.14 and ±0.01 wt% HFC 152a (−0.01 and + 0.14 wt% HCFC 142b), respectively. The purities of the samples were 99.9 wt% for HFC 152a and 99.8 wt% for HCFC 142b. A binary interaction parameter, k ij , in the Peng-Robinson equation of state was determined as a function of temperature for representing the bubble-point pressures. On the other hand, two constant binary-interaction parameters, k ij and l ij , were introduced into the mixing rule of the Hankinson-Brobst-Thomson equation for representing the saturated liquid densities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 20 (1999), S. 911-922 
    ISSN: 1572-9567
    Keywords: alternative refrigerant ; binary R-125 + R-143a mixtures ; bubble-point pressure ; compressed-liquid density ; R-125 ; R-143a ; saturated-liquid density ; vapor-liquid equilibria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Bubble-point pressures and saturated- and compressed-liquid densities of the binary R-125 (pentafluoroethane) + R-143a (1,1,1 -trifluoroethane) system have been measured for several compositions at temperatures from 280 to 330 K by means of a magnetic densimeter coupled with a variable-volume cell mounted with a metallic bellows. The experimental uncertainties of the temperature, pressure, density, and composition were estimated to be within ±10mK, ± 12 kPa, ±0.2%, and ±0.2mass%, respectively. The purities of the samples used throughout the measurements are 99.96 area% for R-125 and 99.94 area% for R-143a. Based on these measurements, the thermodynamic behavior of the vapor-liquid equilibria of this binary refrigerant mixture has been represented using the Peng–Robinson equation for the bubble-point pressures, a correlation for the saturated-liquid densities, and an equation of state for the compressed-liquid densities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...