Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta mechanica solida Sinica 6 (1993), S. 81-97 
    ISSN: 0894-9166
    Keywords: finite deformation ; dilatant soil ; cavity expansion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This paper considers large elastoplastic deformations of an internally pressurized hollow sphere of dilatant soil. A complete analytical solution for the expansion of a hollow sphere is developed. The soil is modelled as an elastic-perfectly plastic material obeying the Mohr-Coulomb yield criterion. A non-associated plastic flow rule is used and therefore the dilation of the material is fully taken into account. Closed form solutions are obtained for the stresses and the elastic-plastic deformations of arbitrary magnitude when a hollow sphere of soil is subjected to constant external pressure and monotonically increasing internal pressure. A selection of numerical results is presented to indicate the effects of various key parameters
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    International Journal for Numerical and Analytical Methods in Geomechanics 20 (1996), S. 489-516 
    ISSN: 0363-9061
    Keywords: cavity expansion ; critical state models ; plasticity ; pile installation ; normally and overconsolidated clays ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Notes: Boundary value problems for hardening/softening soils, such as Cam-Clay, usually require the extensive use of finite element methods. Here analytical and semi-analytical solutions for the undrained expansion of cylindrical and spherical cavities in critical state soils are presented. The strain is finite, the initial cavity radius is arbitrary and the procedure applicable to any isotropically hardening materials. In all cases only simple quadratures are involved, and in the case of the original Cam-Clay a complete analytical solution can be found. In addition to providing models of the behaviour of displacement piles and pressuremeters these results also provide valuable benchmark solutions for verifying various numerical methods.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...