Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 43 (1990), S. 307-314 
    ISSN: 0730-2312
    Keywords: glycans ; cell recognition ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A proteoglycan-like aggregation factor from the marine spongeMicrociona prolifera (MAF) mediates cell-cell recognition via a cell-binding and a self-association domain. After repetitive and prolonged treatment of MAF with glycopeptide-N-glycosidase (PNGase) the specific binding of MAF to homotypic cells was decreased by 72%. Polyacrylamide gel electrophoresis and gel filtration analysis of such PNGase digests showed that: (1) the enzyme released a single glycan type of Mr = 6 × 1032 (G-6) from MAF, (2) 1 mole of MAF contains at least 830 moles of N-linked chains of G-6 glycan. The correlation between the loss of the binding activity of MAF and the extent of the release of the repetitive G-6 polysaccharide strongly suggests its involvement in MAF-cell association via highly polyvalent interactions.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 562-568 
    ISSN: 0730-2312
    Keywords: cell adhesion ; cell recognition ; proteoglycan ; carbohydrate ; polyvalence ; sponge ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cell-cell interactions play an important role in the development, maintenance, and pathogenesis of tissues. They are highly dynamic processes which include migration, recognition, signaling, adhesion, and finally attachment. Cells on their pathway to a final location have to pass and interact with their substratum formed of matrix and cell layers. Testing and recognition are important keys for the proper result of tissue formation. They can, however, also lead to diseases when they are misused in pathological situations, by microorganisms or malignant cells, for instance.Carbohydrates, which are the most prominent surface-exposed structures, must play an important role as recognition molecules in such processes. The rich variability of carbohydrate sequences which cell surfaces can present to lectins, adhesion molecules, and other ligands creates a refined pattern of potential attachment sites. The subtle control of the surface presentation density can provide variations in attachment strength. Not only the carbohydrate sequences but also the fact that carbohydrates can be branched while proteins cannot and that the oligosaccharide chains can be attached to the protein backbone in different densities and patterns will create yet more interaction possibilities.Maximal use of the combinatorial richness of carbohydrate molecules would be made when carbohydrate sequences could interact with other carbohydrate sequences. Such interactions have only very rarely been considered for biochemically and biologically relevant situations since they are difficult to measure. A few are known and will be summarized here with the hope that this wealth of possible chemical interactions may be considered more and more by surface cell biochemists when analyzing fine tuning in cellular interactions. © 1996 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...