Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9613
    Keywords: Reversible/irreversible reactions ; effects of dimensionality/spatial extent ; chaos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Recently, anexact procedure has been introduced [C. A. Walsh and J. J. Kozak,Phys. Rev. Lett. 47:1500 (1981)] for calculating the expected walk length 〈n〉 for a walker undergoing random displacements on a finite or infinite (periodic)d-dimensional lattice with traps (reactive sites). The method (which is based on a classification of the symmetry of the sites surrounding the central deep trap and a coding of the fate of the random walker as it encounters a site of given symmetry) is applied here to several problems in lattice statistics for each of whichexact results are presented. First, we assess the importance of lattice geometry in influencing the efficiency of reaction-diffusion processes in simple and multiple trap systems by reporting values of 〈n〉 for square (cubic) versus hexagonal lattices ind=2, 3. We then show how the method may be applied to variable-step (distance-dependent) walks for a single walker on a given lattice and also demonstrate the calculation of the expected walk length 〈n〉 for the case of multiple walkers. Finally, we make contact with recent discussions of “mixing” by showing that the degree of chaos associated with flows in certain lattice systems can be calibrated by monitoring the lattice walks induced by the Poincaré map of a certain parabolic function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...