Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 25 (1994), S. 11-19 
    ISSN: 1572-879X
    Keywords: Methane ; chlorination ; solid superacids ; sulfated zirconia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Catalytic chlorination of methane was studied over SO 4 2− /ZrO2, Pt/SO 4 2− /ZrO2, and Fe/Mn/SO 4 2− /ZrO2 solid superacid catalysts. The reactions were carried out in a continuous flow reactor under atmospheric pressure, at temperatures below 240°C, with a gaseous hourly space velocity of 1000 ml/g h and a methane to chlorine ratio of 4 to 1. At 200°C with 30% chlorine converted the selectivity in methyl chloride exceeds 90%. At more elevated temperatures, the selectivity decreases but stays above 80% in methyl chloride at 225°C using the sulfated zirconia catalysts. The selectivity can be enhanced by adding platinum to sulfated zirconia catalysts. An iron and manganese-doped catalyst exhibited excellent selectivities at somewhat lower conversions. Methyl chloride is obtained at 235°C in selectivities greater than 85%. No chloroform or carbon tetrachloride is formed. The electrophilic insertion involves electron-deficient metal-coordinated chlorine into the methane C-H bond.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 16 (1992), S. 27-38 
    ISSN: 1572-879X
    Keywords: Methane ; chlorination ; solid acid ; zeolites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Chlorination of methane was studied over amorphous silica-alumina, silicalite as well as H-mordenite, X, Y, NaL and H-ZSM-5 zeolite catalysts. The heterogeneous transformations were carried out in a continuous flow reactor in the 200–425 °C temperature range, under atmospheric pressure (methane to chlorine ratio 4:1, GHSV 600 ml/ g h). Chlorination of methane over zeolites in the 200–300 °C temperature range proceeds without selectivity indicating a radical mechanism. Above 300–350 °C, depending on the nature of zeolite, selective monochlorination takes place indicating the dominance of an ionic mechanism. H-mordenite was found to give the best monochlorination at the lowest temperature (99.2% CH3Cl at 350 °C). The observed selectivity of the investigated zeolites is strongly time limited. All investigated catalysts lose their selectivity after five hours on-stream due to extraction of aluminum from the framework of zeolites by hydrogen chloride. Amorphous silica-alumina above 350 °C also catalyzes ionic chlorination. The chlorination of methane over silicalite proceeds via the nonselective radical pathway at the investigated temperatures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...